

 Navigation

 	
 index

 	
 next |

 	OpenERP Web Developers Documentation 7.0 documentation

Welcome to OpenERP Web’s documentation!

Contents:

	Building an OpenERP Web module

	Widget

	Asynchronous Operations

	RPC Calls

	QWeb

	Client actions

	Guidelines and Recommendations

	Testing in OpenERP Web

	Search View

	List View

	Notes on the usage of the Form View as a sub-widget

	API changes from OpenERP Web 6.1 to 7.0

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, OpenERP s.a..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenERP Web Developers Documentation 7.0 documentation

Building an OpenERP Web module

There is no significant distinction between an OpenERP Web module and
an OpenERP module, the web part is mostly additional data and code
inside a regular OpenERP module. This allows providing more seamless
features by integrating your module deeper into the web client.

A Basic Module

A very basic OpenERP module structure will be our starting point:

web_example
├── __init__.py
└── __openerp__.py

__openerp__.py
{
 'name': "Web Example",
 'description': "Basic example of a (future) web module",
 'category': 'Hidden',
 'depends': ['base'],
}

This is a sufficient minimal declaration of a valid OpenERP module.

Web Declaration

There is no such thing as a “web module” declaration. An OpenERP
module is automatically recognized as “web-enabled” if it contains a
static directory at its root, so:

web_example
├── __init__.py
├── __openerp__.py
└── static

is the extent of it. You should also change the dependency to list
web:

--- web_example/__openerp__.py
+++ web_example/__openerp__.py
@@ -1,7 +1,7 @@
 # __openerp__.py
 {
 'name': "Web Example",
 'description': "Basic example of a (future) web module",
 'category': 'Hidden',
- 'depends': ['base'],
+ 'depends': ['web'],
 }

Note

This does not matter in normal operation so you may not realize
it’s wrong (the web module does the loading of everything else, so
it can only be loaded), but when e.g. testing the loading process
is slightly different than normal, and incorrect dependency may
lead to broken code.

This makes the “web” discovery system consider the module as having a
“web part”, and check if it has web controllers to mount or javascript
files to load. The content of the static/ folder is also
automatically made available to web browser at the URL
$module-name/static/$file-path. This is sufficient to provide
pictures (of cats, usually) through your module. However there are
still a few more steps to running javascript code.

Getting Things Done

The first one is to add javascript code. It’s customary to put it in
static/src/js, to have room for e.g. other file types, or
third-party libraries.

// static/src/js/first_module.js
console.log("Debug statement: file loaded");

The client won’t load any file unless specified, thus the new file
should be listed in the module’s manifest file, under a new key js
(a list of file names, or glob patterns):

--- web_example/__openerp__.py
+++ web_example/__openerp__.py
@@ -1,7 +1,8 @@
 # __openerp__.py
 {
 'name': "Web Example",
 'description': "Basic example of a (future) web module",
 'category': 'Hidden',
 'depends': ['web'],
+ 'js': ['static/src/js/first_module.js'],
 }

At this point, if the module is installed and the client reloaded the
message should appear in your browser’s development console.

Note

Because the manifest file has been edited, you will have to
restart the OpenERP server itself for it to be taken in account.

You may also want to open your browser’s console before
reloading, depending on the browser messages printed while the
console is closed may not work or may not appear after opening it.

Note

If the message does not appear, try cleaning your browser’s caches
and ensure the file is correctly loaded from the server logs or
the “resources” tab of your browser’s developers tools.

At this point the code runs, but it runs only once when the module is
initialized, and it can’t get access to the various APIs of the web
client (such as making RPC requests to the server). This is done by
providing a javascript module [http://addyosmani.com/resources/essentialjsdesignpatterns/book/#modulepatternjavascript]:

--- web_example/static/src/js/first_module.js
+++ web_example/static/src/js/first_module.js
@@ -1,2 +1,4 @@
 // static/src/js/first_module.js
-console.log("Debug statement: file loaded");
+openerp.web_example = function (instance) {
+ console.log("Module loaded");
+};

If you reload the client, you’ll see a message in the console exactly
as previously. The differences, though invisible at this point, are:

	All javascript files specified in the manifest (only this one so
far) have been fully loaded

	An instance of the web client and a namespace inside that instance
(with the same name as the module) have been created and are
available for use

The latter point is what the instance parameter to the function
provides: an instance of the OpenERP Web client, with the contents of
all the new module’s dependencies loaded in and initialized. These are
the entry points to the web client’s APIs.

To demonstrate, let’s build a simple client action: a stopwatch

First, the action declaration:

--- web_example/__openerp__.py
+++ web_example/__openerp__.py
@@ -1,8 +1,9 @@
 # __openerp__.py
 {
 'name': "Web Example",
 'description': "Basic example of a (future) web module",
 'category': 'Hidden',
 'depends': ['web'],
+ 'data': ['web_example.xml'],
 'js': ['static/src/js/first_module.js'],
 }

<!-- web_example/web_example.xml -->
<openerp>
 <data>
 <record model="ir.actions.client" id="action_client_example">
 <field name="name">Example Client Action</field>
 <field name="tag">example.action</field>
 </record>
 <menuitem action="action_client_example"
 id="menu_client_example"/>
 </data>
</openerp>

then set up the client action hook to register
a function (for now):

--- web_example/static/src/js/first_module.js
+++ web_example/static/src/js/first_module.js
@@ -1,4 +1,7 @@
 // static/src/js/first_module.js
 openerp.web_example = function (instance) {
- console.log("Module loaded");
+ instance.web.client_actions.add('example.action', 'instance.web_example.Action');
+ instance.web_example.Action = function (parent, action) {
+ console.log("Executed the action", action);
+ };
 };

Updating the module (in order to load the XML description) and
re-starting the server should display a new menu Example Client
Action at the top-level. Opening said menu will make the message
appear, as usual, in the browser’s console.

Paint it black

The next step is to take control of the page itself, rather than just
print little messages in the console. This we can do by replacing our
client action function by a Widget. Our widget will simply use
its start() to add some content to its
DOM:

--- web_example/static/src/js/first_module.js
+++ web_example/static/src/js/first_module.js
@@ -1,7 +1,11 @@
 // static/src/js/first_module.js
 openerp.web_example = function (instance) {
- instance.web.client_actions.add('example.action', 'instance.web_example.Action');
- instance.web_example.Action = function (parent, action) {
- console.log("Executed the action", action);
- };
+ instance.web.client_actions.add('example.action', 'instance.web_example.Action');
+ instance.web_example.Action = instance.web.Widget.extend({
+ className: 'oe_web_example',
+ start: function () {
+ this.$el.text("Hello, world!");
+ return this._super();
+ }
+ });
 };

after reloading the client (to update the javascript file), instead of
printing to the console the menu item clears the whole screen and
displays the specified message in the page.

Since we’ve added a class on the widget’s DOM root we can now see how to add a stylesheet to a module:
first create the stylesheet file:

.openerp .oe_web_example {
 color: white;
 background-color: black;
 height: 100%;
 font-size: 400%;
}

then add a reference to the stylesheet in the module’s manifest (which
will require restarting the OpenERP Server to see the changes, as
usual):

--- web_example/__openerp__.py
+++ web_example/__openerp__.py
@@ -1,9 +1,10 @@
 # __openerp__.py
 {
 'name': "Web Example",
 'description': "Basic example of a (future) web module",
 'category': 'Hidden',
 'depends': ['web'],
 'data': ['web_example.xml'],
 'js': ['static/src/js/first_module.js'],
+ 'css': ['static/src/css/web_example.css'],
 }

the text displayed by the menu item should now be huge, and
white-on-black (instead of small and black-on-white). From there on,
the world’s your canvas.

Note

Prefixing CSS rules with both .openerp (to ensure the rule
will apply only within the confines of the OpenERP Web client) and
a class at the root of your own hierarchy of widgets is strongly
recommended to avoid “leaking” styles in case the code is running
embedded in an other web page, and does not have the whole screen
to itself.

So far we haven’t built much (any, really) DOM content. It could all
be done in start() but that gets unwieldy
and hard to maintain fast. It is also very difficult to extend by
third parties (trying to add or change things in your widgets) unless
broken up into multiple methods which each perform a little bit of the
rendering.

The first way to handle this method is to delegate the content to
plenty of sub-widgets, which can be individually overridden. An other
method [1] is to use a template [http://en.wikipedia.org/wiki/Web_template] to render a widget’s
DOM.

OpenERP Web’s template language is QWeb. Although any
templating engine can be used (e.g. mustache [http://mustache.github.com/] or _.template [http://underscorejs.org/#template]) QWeb has important features
which other template engines may not provide, and has special
integration to OpenERP Web widgets.

Adding a template file is similar to adding a style sheet:

<templates>
<div t-name="web_example.action" class="oe_web_example oe_web_example_stopped">
 <h4 class="oe_web_example_timer">00:00:00</h4>
 <p class="oe_web_example_start">
 <button type="button">Start</button>
 </p>
 <p class="oe_web_example_stop">
 <button type="button">Stop</button>
 </p>
</div>
</templates>

--- web_example/__openerp__.py
+++ web_example/__openerp__.py
@@ -1,10 +1,11 @@
 # __openerp__.py
 {
 'name': "Web Example",
 'description': "Basic example of a (future) web module",
 'category': 'Hidden',
 'depends': ['web'],
 'data': ['web_example.xml'],
 'js': ['static/src/js/first_module.js'],
 'css': ['static/src/css/web_example.css'],
+ 'qweb': ['static/src/xml/web_example.xml'],
 }

The template can then easily be hooked in the widget:

--- web_example/static/src/js/first_module.js
+++ web_example/static/src/js/first_module.js
@@ -1,11 +1,7 @@
 // static/src/js/first_module.js
 openerp.web_example = function (instance) {
 instance.web.client_actions.add('example.action', 'instance.web_example.Action');
 instance.web_example.Action = instance.web.Widget.extend({
+ template: 'web_example.action'
- className: 'oe_web_example',
- start: function () {
- this.$el.text("Hello, world!");
- return this._super();
- }
 });
 };

And finally the CSS can be altered to style the new (and more complex)
template-generated DOM, rather than the code-generated one:

--- web_example/static/src/css/web_example.css
+++ web_example/static/src/css/web_example.css
@@ -1,6 +1,13 @@
 .openerp .oe_web_example {
 color: white;
 background-color: black;
 height: 100%;
- font-size: 400%;
 }
+.openerp .oe_web_example h4 {
+ margin: 0;
+ font-size: 200%;
+}
+.openerp .oe_web_example.oe_web_example_started .oe_web_example_start button,
+.openerp .oe_web_example.oe_web_example_stopped .oe_web_example_stop button {
+ display: none
+}

Note

The last section of the CSS change is an example of “state
classes”: a CSS class (or set of classes) on the root of the
widget, which is toggled when the state of the widget changes and
can perform drastic alterations in rendering (usually
showing/hiding various elements).

This pattern is both fairly simple (to read and understand) and
efficient (because most of the hard work is pushed to the
browser’s CSS engine, which is usually highly optimized, and done
in a single repaint after toggling the class).

The last step (until the next one) is to add some behavior and make
our stopwatch watch. First hook some events on the buttons to toggle
the widget’s state:

--- web_example/static/src/js/first_module.js
+++ web_example/static/src/js/first_module.js
@@ -1,7 +1,19 @@
 // static/src/js/first_module.js
 openerp.web_example = function (instance) {
 instance.web.client_actions.add('example.action', 'instance.web_example.Action');
 instance.web_example.Action = instance.web.Widget.extend({
- template: 'web_example.action'
+ template: 'web_example.action',
+ events: {
+ 'click .oe_web_example_start button': 'watch_start',
+ 'click .oe_web_example_stop button': 'watch_stop'
+ },
+ watch_start: function () {
+ this.$el.addClass('oe_web_example_started')
+ .removeClass('oe_web_example_stopped');
+ },
+ watch_stop: function () {
+ this.$el.removeClass('oe_web_example_started')
+ .addClass('oe_web_example_stopped');
+ },
 });
 };

This demonstrates the use of the “events hash” and event delegation to
declaratively handle events on the widget’s DOM. And already changes
the button displayed in the UI. Then comes some actual logic:

--- web_example/static/src/js/first_module.js
+++ web_example/static/src/js/first_module.js
@@ -1,19 +1,52 @@
 // static/src/js/first_module.js
 openerp.web_example = function (instance) {
 instance.web.client_actions.add('example.action', 'instance.web_example.Action');
 instance.web_example.Action = instance.web.Widget.extend({
 template: 'web_example.action',
 events: {
 'click .oe_web_example_start button': 'watch_start',
 'click .oe_web_example_stop button': 'watch_stop'
 },
+ init: function () {
+ this._super.apply(this, arguments);
+ this._start = null;
+ this._watch = null;
+ },
+ update_counter: function () {
+ var h, m, s;
+ // Subtracting javascript dates returns the difference in milliseconds
+ var diff = new Date() - this._start;
+ s = diff / 1000;
+ m = Math.floor(s / 60);
+ s -= 60*m;
+ h = Math.floor(m / 60);
+ m -= 60*h;
+ this.$('.oe_web_example_timer').text(
+ _.str.sprintf("%02d:%02d:%02d", h, m, s));
+ },
 watch_start: function () {
 this.$el.addClass('oe_web_example_started')
 .removeClass('oe_web_example_stopped');
+ this._start = new Date();
+ // Update the UI to the current time
+ this.update_counter();
+ // Update the counter at 30 FPS (33ms/frame)
+ this._watch = setInterval(
+ this.proxy('update_counter'),
+ 33);
 },
 watch_stop: function () {
+ clearInterval(this._watch);
+ this.update_counter();
+ this._start = this._watch = null;
 this.$el.removeClass('oe_web_example_started')
 .addClass('oe_web_example_stopped');
 },
+ destroy: function () {
+ if (this._watch) {
+ clearInterval(this._watch);
+ }
+ this._super();
+ }
 });
 };

	An initializer (the init method) is introduced to set-up a few
internal variables: _start will hold the start of the timer (as
a javascript Date object), and _watch will hold a ticker to
update the interface regularly and display the “current time”.

	update_counter is in charge of taking the time difference
between “now” and _start, formatting as HH:MM:SS and
displaying the result on screen.

	watch_start is augmented to initialize _start with its value
and set-up the update of the counter display every 33ms.

	watch_stop disables the updater, does a final update of the
counter display and resets everything.

	Finally, because javascript Interval and Timeout objects execute
“outside” the widget, they will keep going even after the widget has
been destroyed (especially an issue with intervals as they repeat
indefinitely). So _watch must be cleared when the widget is
destroyed (then the _super must be called as well in order to
perform the “normal” widget cleanup).

Starting and stopping the watch now works, and correctly tracks time
since having started the watch, neatly formatted.

	[1]	they are not alternative solutions: they work very
well together. Templates are used to build “just
DOM”, sub-widgets are used to build DOM subsections
and delegate part of the behavior (e.g. events
handling).

 Copyright 2012, OpenERP s.a..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenERP Web Developers Documentation 7.0 documentation

Widget

	
class openerp.web.Widget()

	

This is the base class for all visual components. It corresponds to an MVC
view. It provides a number of services to handle a section of a page:

	Rendering with QWeb

	Parenting-child relations

	Life-cycle management (including facilitating children destruction when a
parent object is removed)

	DOM insertion, via jQuery-powered insertion methods. Insertion targets can
be anything the corresponding jQuery method accepts (generally selectors,
DOM nodes and jQuery objects):

	appendTo()

	Renders the widget and inserts it as the last child of the target, uses
.appendTo() [http://api.jquery.com/appendTo/]

	prependTo()

	Renders the widget and inserts it as the first child of the target, uses
.prependTo() [http://api.jquery.com/prependTo/]

	insertAfter()

	Renders the widget and inserts it as the preceding sibling of the target,
uses .insertAfter() [http://api.jquery.com/insertAfter/]

	insertBefore()

	Renders the widget and inserts it as the following sibling of the target,
uses .insertBefore() [http://api.jquery.com/insertBefore/]

	Backbone-compatible shortcuts

DOM Root

A Widget() is responsible for a section of the
page materialized by the DOM root of the widget. The DOM root is
available via the el and
$el attributes, which are
respectively the raw DOM Element and the jQuery wrapper around the DOM
element.

There are two main ways to define and generate this DOM root:

	
openerp.web.Widget.template

	Should be set to the name of a QWeb template (a
String()). If set, the template will be rendered after
the widget has been initialized but before it has been
started. The root element generated by the template will be set as
the DOM root of the widget.

	
openerp.web.Widget.tagName

	Used if the widget has no template defined. Defaults to div,
will be used as the tag name to create the DOM element to set as
the widget’s DOM root. It is possible to further customize this
generated DOM root with the following attributes:

	
openerp.web.Widget.id

	Used to generate an id attribute on the generated DOM
root.

	
openerp.web.Widget.className

	Used to generate a class attribute on the generated DOM root.

	
openerp.web.Widget.attributes

	Mapping (object literal) of attribute names to attribute
values. Each of these k:v pairs will be set as a DOM attribute
on the generated DOM root.

None of these is used in case a template is specified on the widget.

The DOM root can also be defined programmatically by overridding

	
openerp.web.Widget.renderElement()

	Renders the widget’s DOM root and sets it. The default
implementation will render a set template or generate an element
as described above, and will call
setElement() on the result.

Any override to renderElement() which
does not call its _super must call
setElement() with whatever it
generated or the widget’s behavior is undefined.r

Note

The default renderElement() can
be called repeatedly, it will replace the previous DOM root
(using replaceWith). However, this requires that the
widget correctly sets and unsets its events (and children
widgets). Generally,
renderElement() should not be
called repeatedly unless the widget advertizes this feature.

Accessing DOM content

Because a widget is only responsible for the content below its DOM
root, there is a shortcut for selecting sub-sections of a widget’s
DOM:

	
openerp.web.Widget.$(selector)

	Applies the CSS selector specified as parameter to the widget’s
DOM root.

this.$(selector);

is functionally identical to:

this.$el.find(selector);

	Arguments:	
	selector (String) – CSS selector

	Returns:	jQuery object

Note

this helper method is compatible with
Backbone.View.$

Resetting the DOM root

	
openerp.web.Widget.setElement(element)

	Re-sets the widget’s DOM root to the provided element, also
handles re-setting the various aliases of the DOM root as well as
unsetting and re-setting delegated events.

	Arguments:	
	element (Element) – a DOM element or jQuery object to set as
the widget’s DOM root

Note

should be mostly compatible with Backbone’s
setElement [http://backbonejs.org/#View-setElement]

DOM events handling

A widget will generally need to respond to user action within its
section of the page. This entails binding events to DOM elements.

To this end, Widget() provides an shortcut:

	
openerp.web.Widget.events

	Events are a mapping of event selector (an event name and a
CSS selector separated by a space) to a callback. The callback can
be either a method name in the widget or a function. In either
case, the this will be set to the widget:

events: {
 'click p.oe_some_class a': 'some_method',
 'change input': function (e) {
 e.stopPropagation();
 }
},

The selector is used for jQuery’s event delegation [http://api.jquery.com/delegate/], the
callback will only be triggered for descendants of the DOM root
matching the selector [0]. If the selector is left out (only an
event name is specified), the event will be set directly on the
widget’s DOM root.

	
openerp.web.Widget.delegateEvents()

	This method is in charge of binding
events to the DOM. It is
automatically called after setting the widget’s DOM root.

It can be overridden to set up more complex events than the
events map allows, but the parent
should always be called (or events
won’t be handled correctly).

	
openerp.web.Widget.undelegateEvents()

	This method is in charge of unbinding
events from the DOM root when the
widget is destroyed or the DOM root is reset, in order to avoid
leaving “phantom” events.

It should be overridden to un-set any event set in an override of
delegateEvents().

Note

this behavior should be compatible with Backbone’s
delegateEvents [http://backbonejs.org/#View-delegateEvents], apart from not accepting any argument.

Subclassing Widget

Widget() is subclassed in the standard manner (via the
extend() method), and provides a number of
abstract properties and concrete methods (which you may or may not want to
override). Creating a subclass looks like this:

var MyWidget = openerp.base.Widget.extend({
 // QWeb template to use when rendering the object
 template: "MyQWebTemplate",

 init: function(parent) {
 this._super(parent);
 // insert code to execute before rendering, for object
 // initialization
 },
 start: function() {
 this._super();
 // post-rendering initialization code, at this point
 // ``this.$element`` has been initialized
 this.$element.find(".my_button").click(/* an example of event binding * /);

 // if ``start`` is asynchronous, return a promise object so callers
 // know when the object is done initializing
 return this.rpc(/* … */)
 }
});

The new class can then be used in the following manner:

// Create the instance
var my_widget = new MyWidget(this);
// Render and insert into DOM
my_widget.appendTo(".some-div");

After these two lines have executed (and any promise returned by appendTo
has been resolved if needed), the widget is ready to be used.

Note

the insertion methods will start the widget themselves, and will
return the result of start().

If for some reason you do not want to call these methods, you will
have to first call render() on the
widget, then insert it into your DOM and start it.

If the widget is not needed anymore (because it’s transient), simply terminate
it:

my_widget.destroy();

will unbind all DOM events, remove the widget’s content from the DOM and
destroy all widget data.

	[0]	not all DOM events are compatible with events delegation

 Copyright 2012, OpenERP s.a..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenERP Web Developers Documentation 7.0 documentation

Asynchronous Operations

As a language (and runtime), javascript is fundamentally
single-threaded. This means any blocking request or computation will
blocks the whole page (and, in older browsers, the software itself
even preventing users from switching to an other tab): a javascript
environment can be seen as an event-based runloop where application
developers have no control over the runloop itself.

As a result, performing long-running synchronous network requests or
other types of complex and expensive accesses is frowned upon and
asynchronous APIs are used instead.

Asynchronous code rarely comes naturally, especially for developers
used to synchronous server-side code (in Python, Java or C#) where the
code will just block until the deed is gone. This is increased further
when asynchronous programming is not a first-class concept and is
instead implemented on top of callbacks-based programming, which is
the case in javascript.

The goal of this guide is to provide some tools to deal with
asynchronous systems, and warn against systematic issues or dangers.

Deferreds

Deferreds are a form of promises [http://en.wikipedia.org/wiki/Promise_(programming)]. OpenERP Web currently uses
jQuery’s deferred [http://api.jquery.com/category/deferred-object/].

The core idea of deferreds is that potentially asynchronous methods
will return a Deferred() object instead of an arbitrary
value or (most commonly) nothing.

This object can then be used to track the end of the asynchronous
operation by adding callbacks onto it, either success callbacks or
error callbacks.

A great advantage of deferreds over simply passing callback functions
directly to asynchronous methods is the ability to compose them.

Using deferreds

Deferreds’s most important method is Deferred.then(). It is
used to attach new callbacks to the deferred object.

	the first parameter attaches a success callback, called when the
deferred object is successfully resolved and provided with the
resolved value(s) for the asynchronous operation.

	the second parameter attaches a failure callback, called when the
deferred object is rejected and provided with rejection values
(often some sort of error message).

Callbacks attached to deferreds are never “lost”: if a callback is
attached to an already resolved or rejected deferred, the callback
will be called (or ignored) immediately. A deferred is also only ever
resolved or rejected once, and is either resolved or rejected: a given
deferred can not call a single success callback twice, or call both a
success and a failure callbacks.

then() should be the method you’ll use most often
when interacting with deferred objects (and thus asynchronous APIs).

Building deferreds

After using asynchronous APIs may come the time to build them: for
mocks [http://en.wikipedia.org/wiki/Mock_object], to compose deferreds from multiple source in a complex
manner, in order to let the current operations repaint the screen or
give other events the time to unfold, ...

This is easy using jQuery’s deferred objects.

Note

this section is an implementation detail of jQuery Deferred
objects, the creation of promises is not part of any
standard (even tentative) that I know of. If you are using
deferred objects which are not jQuery’s, their API may (and
often will) be completely different.

Deferreds are created by invoking their constructor [1] without any
argument. This creates a Deferred() instance object with the
following methods:

Deferred.resolve()

As its name indicates, this method moves the deferred to the
“Resolved” state. It can be provided as many arguments as
necessary, these arguments will be provided to any pending success
callback.

Deferred.reject()

Similar to resolve(), but moves the deferred to
the “Rejected” state and calls pending failure handlers.

Deferred.promise()

Creates a readonly view of the deferred object. It is generally a
good idea to return a promise view of the deferred to prevent
callers from resolving or rejecting the deferred in your stead.

reject() and resolve() are used
to inform callers that the asynchronous operation has failed (or
succeeded). These methods should simply be called when the
asynchronous operation has ended, to notify anybody interested in its
result(s).

Composing deferreds

What we’ve seen so far is pretty nice, but mostly doable by passing
functions to other functions (well adding functions post-facto would
probably be a chore... still, doable).

Deferreds truly shine when code needs to compose asynchronous
operations in some way or other, as they can be used as a basis for
such composition.

There are two main forms of compositions over deferred: multiplexing
and piping/cascading.

Deferred multiplexing

The most common reason for multiplexing deferred is simply performing
2+ asynchronous operations and wanting to wait until all of them are
done before moving on (and executing more stuff).

The jQuery multiplexing function for promises is when().

Note

the multiplexing behavior of jQuery’s when() is an
(incompatible, mostly) extension of the behavior defined in
CommonJS Promises/B [http://wiki.commonjs.org/wiki/Promises/B].

This function can take any number of promises [2] and will return a
promise.

This returned promise will be resolved when all multiplexed promises
are resolved, and will be rejected as soon as one of the multiplexed
promises is rejected (it behaves like Python’s all(), but with
promise objects instead of boolean-ish).

The resolved values of the various promises multiplexed via
when() are mapped to the arguments of when()‘s
success callback, if they are needed. The resolved values of a promise
are at the same index in the callback’s arguments as the promise in
the when() call so you will have:

$.when(p0, p1, p2, p3).then(
 function (results0, results1, results2, results3) {
 // code
});

Warning

in a normal mapping, each parameter to the callback would be an
array: each promise is conceptually resolved with an array of 0..n
values and these values are passed to when()‘s
callback. But jQuery treats deferreds resolving a single value
specially, and “unwraps” that value.

For instance, in the code block above if the index of each promise
is the number of values it resolves (0 to 3), results0 is an
empty array, results2 is an array of 2 elements (a pair) but
results1 is the actual value resolved by p1, not an array.

Deferred chaining

A second useful composition is starting an asynchronous operation as
the result of an other asynchronous operation, and wanting the result
of both: with the tools described so far, handling e.g. OpenERP’s
search/read sequence with this would require something along the lines
of:

var result = $.Deferred();
Model.search(condition).then(function (ids) {
 Model.read(ids, fields).then(function (records) {
 result.resolve(records);
 });
});
return result.promise();

While it doesn’t look too bad for trivial code, this quickly gets
unwieldy.

But then() also allows handling this kind of
chains: it returns a new promise object, not the one it was called
with, and the return values of the callbacks is actually important to
it: whichever callback is called,

	If the callback is not set (not provided or left to null), the
resolution or rejection value(s) is simply forwarded to
then()‘s promise (it’s essentially a noop)

	If the callback is set and does not return an observable object (a
deferred or a promise), the value it returns (undefined if it
does not return anything) will replace the value it was given, e.g.

promise.then(function () {
 console.log('called');
});

will resolve with the sole value undefined.

	If the callback is set and returns an observable object, that object
will be the actual resolution (and result) of the pipe. This means a
resolved promise from the failure callback will resolve the pipe,
and a failure promise from the success callback will reject the
pipe.

This provides an easy way to chain operation successes, and the
previous piece of code can now be rewritten:

return Model.search(condition).then(function (ids) {
 return Model.read(ids, fields);
});

the result of the whole expression will encode failure if either
search or read fails (with the right rejection values), and
will be resolved with read‘s resolution values if the chain
executes correctly.

then() is also useful to adapt third-party
promise-based APIs, in order to filter their resolution value counts
for instance (to take advantage of when() ‘s special
treatment of single-value promises).

jQuery.Deferred API

	
when(deferreds…)

	

	Arguments:	
	deferreds – deferred objects to multiplex

	Returns:	a multiplexed deferred

	Return type:	Deferred()

	
class Deferred()

	
	
Deferred.then(doneCallback[, failCallback])

	Attaches new callbacks to the resolution or rejection of the
deferred object. Callbacks are executed in the order they are
attached to the deferred.

To provide only a failure callback, pass null as the
doneCallback, to provide only a success callback the
second argument can just be ignored (and not passed at all).

Returns a new deferred which resolves to the result of the
corresponding callback, if a callback returns a deferred
itself that new deferred will be used as the resolution of the
chain.

	Arguments:	
	doneCallback (Function) – function called when the deferred is resolved

	failCallback (Function) – function called when the deferred is rejected

	Returns:	the deferred object on which it was called

	Return type:	Deferred()

	
Deferred.done(doneCallback)

	Attaches a new success callback to the deferred, shortcut for
deferred.then(doneCallback).

This is a jQuery extension to CommonJS Promises/A [http://wiki.commonjs.org/wiki/Promises/A] providing
little value over calling then() directly,
it should be avoided.

	Arguments:	
	doneCallback (Function) – function called when the deferred is resolved

	Returns:	the deferred object on which it was called

	Return type:	Deferred()

	
Deferred.fail(failCallback)

	Attaches a new failure callback to the deferred, shortcut for
deferred.then(null, failCallback).

A second jQuery extension to Promises/A. Although it provides more value than
done(), it still is not much and should be
avoided as well.

	Arguments:	
	failCallback (Function) – function called when the deferred is rejected

	Returns:	the deferred object on which it was called

	Return type:	Deferred()

	
Deferred.promise()

	Returns a read-only view of the deferred object, with all
mutators (resolve and reject) methods removed.

	
Deferred.resolve(value…)

	Called to resolve a deferred, any value provided will be
passed onto the success handlers of the deferred object.

Resolving a deferred which has already been resolved or
rejected has no effect.

	
Deferred.reject(value…)

	Called to reject (fail) a deferred, any value provided will be
passed onto the failure handler of the deferred object.

Rejecting a deferred which has already been resolved or
rejected has no effect.

	[1]	or simply calling Deferred() as a function, the
result is the same

	[2]	or not-promises, the CommonJS Promises/B [http://wiki.commonjs.org/wiki/Promises/B] role of
when() is to be able to treat values and promises
uniformly: when() will pass promises through directly,
but non-promise values and objects will be transformed into a
resolved promise (resolving themselves with the value itself).

jQuery’s when() keeps this behavior making deferreds
easy to build from “static” values, or allowing defensive code
where expected promises are wrapped in when() just in
case.

 Copyright 2012, OpenERP s.a..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenERP Web Developers Documentation 7.0 documentation

RPC Calls

Building static displays is all nice and good and allows for neat
effects (and sometimes you’re given data to display from third parties
so you don’t have to make any effort), but a point generally comes
where you’ll want to talk to the world and make some network requests.

OpenERP Web provides two primary APIs to handle this, a low-level
JSON-RPC based API communicating with the Python section of OpenERP
Web (and of your addon, if you have a Python part) and a high-level
API above that allowing your code to talk directly to the OpenERP
server, using familiar-looking calls.

All networking APIs are asynchronous. As a result, all
of them will return Deferred() objects (whether they resolve
those with values or not). Understanding how those work before before
moving on is probably necessary.

High-level API: calling into OpenERP models

Access to OpenERP object methods (made available through XML-RPC from
the server) is done via the openerp.web.Model() class. This
class maps onto the OpenERP server objects via two primary methods,
call() and
query().

call() is a direct mapping to the
corresponding method of the OpenERP server object. Its usage is
similar to that of the OpenERP Model API, with three differences:

	The interface is asynchronous, so instead of
returning results directly RPC method calls will return
Deferred() instances, which will themselves resolve to the
result of the matching RPC call.

	Because ECMAScript 3/Javascript 1.5 doesnt feature any equivalent to
__getattr__ or method_missing, there needs to be an explicit
method to dispatch RPC methods.

	No notion of pooler, the model proxy is instantiated where needed,
not fetched from an other (somewhat global) object

var Users = new Model('res.users');

Users.call('change_password', ['oldpassword', 'newpassword'],
 {context: some_context}).then(function (result) {
 // do something with change_password result
});

query() is a shortcut for a builder-style
interface to searches (search + read in OpenERP RPC terms). It
returns a Query() object which is immutable but
allows building new Query() instances from the
first one, adding new properties or modifiying the parent object’s:

Users.query(['name', 'login', 'user_email', 'signature'])
 .filter([['active', '=', true], ['company_id', '=', main_company]])
 .limit(15)
 .all().then(function (users) {
 // do work with users records
});

The query is only actually performed when calling one of the query
serialization methods, all() and
first(). These methods will perform a new
RPC call every time they are called.

For that reason, it’s actually possible to keep “intermediate” queries
around and use them differently/add new specifications on them.

	
class openerp.web.Model(name)

	
	
openerp.web.Model.name

	name of the OpenERP model this object is bound to

	
openerp.web.Model.call(method[, args][, kwargs])

	Calls the method method of the current model, with the
provided positional and keyword arguments.

	Arguments:	
	method (String) – method to call over rpc on the
name

	args (Array<>) – positional arguments to pass to the
method, optional

	kwargs (Object<>) – keyword arguments to pass to the
method, optional

	Return type:	Deferred<>

	
openerp.web.Model.query(fields)

	

	Arguments:	
	fields (Array<String>) – list of fields to fetch during
the search

	Returns:	a Query() object
representing the search to perform

	
class openerp.web.Query(fields)

	The first set of methods is the “fetching” methods. They perform
RPC queries using the internal data of the object they’re called
on.

	
openerp.web.Query.all()

	Fetches the result of the current
Query() object’s search.

	Return type:	Deferred<Array<>>

	
openerp.web.Query.first()

	Fetches the first result of the current
Query(), or null if the current
Query() does have any result.

	Return type:	Deferred<Object | null>

	
openerp.web.Query.count()

	Fetches the number of records the current
Query() would retrieve.

	Return type:	Deferred<Number>

	
openerp.web.Query.group_by(grouping...)

	Fetches the groups for the query, using the first specified
grouping parameter

	Arguments:	
	grouping (Array<String>) – Lists the levels of grouping
asked of the server. Grouping
can actually be an array or
varargs.

	Return type:	Deferred<Array<openerp.web.QueryGroup>> | null

The second set of methods is the “mutator” methods, they create a
new Query() object with the relevant
(internal) attribute either augmented or replaced.

	
openerp.web.Query.context(ctx)

	Adds the provided ctx to the query, on top of any existing
context

	
openerp.web.Query.filter(domain)

	Adds the provided domain to the query, this domain is
AND-ed to the existing query domain.

	
opeenrp.web.Query.offset(offset)

	Sets the provided offset on the query. The new offset
replaces the old one.

	
openerp.web.Query.limit(limit)

	Sets the provided limit on the query. The new limit replaces
the old one.

	
openerp.web.Query.order_by(fields…)

	Overrides the model’s natural order with the provided field
specifications. Behaves much like Django’s QuerySet.order_by [https://docs.djangoproject.com/en/dev/ref/models/querysets/#order-by]:

	Takes 1..n field names, in order of most to least importance
(the first field is the first sorting key). Fields are
provided as strings.

	A field specifies an ascending order, unless it is prefixed
with the minus sign “-” in which case the field is used
in the descending order

Divergences from Django’s sorting include a lack of random sort
(? field) and the inability to “drill down” into relations
for sorting.

Aggregation (grouping)

OpenERP has powerful grouping capacities, but they are kind-of strange
in that they’re recursive, and level n+1 relies on data provided
directly by the grouping at level n. As a result, while read_group
works it’s not a very intuitive API.

OpenERP Web 7.0 eschews direct calls to read_group in favor of
calling a method of Query(), much in the way
it is one in SQLAlchemy [http://docs.sqlalchemy.org/en/latest/orm/query.html#sqlalchemy.orm.query.Query.group_by] [1]:

some_query.group_by(['field1', 'field2']).then(function (groups) {
 // do things with the fetched groups
});

This method is asynchronous when provided with 1..n fields (to group
on) as argument, but it can also be called without any field (empty
fields collection or nothing at all). In this case, instead of
returning a Deferred object it will return null.

When grouping criterion come from a third-party and may or may not
list fields (e.g. could be an empty list), this provides two ways to
test the presence of actual subgroups (versus the need to perform a
regular query for records):

	A check on group_by‘s result and two completely separate code
paths

var groups;
if (groups = some_query.group_by(gby)) {
 groups.then(function (gs) {
 // groups
 });
}
// no groups

	Or a more coherent code path using when()‘s ability to
coerce values into deferreds:

$.when(some_query.group_by(gby)).then(function (groups) {
 if (!groups) {
 // No grouping
 } else {
 // grouping, even if there are no groups (groups
 // itself could be an empty array)
 }
});

The result of a (successful) group_by() is
an array of QueryGroup().

Low-level API: RPC calls to Python side

While the previous section is great for calling core OpenERP code
(models code), it does not work if you want to call the Python side of
OpenERP Web.

For this, a lower-level API exists on on
Connection() objects (usually available through
openerp.connection): the rpc method.

This method simply takes an absolute path (which is the combination of
the Python controller’s _cp_path attribute and the name of the
method you want to call) and a mapping of attributes to values (applied
as keyword arguments on the Python method [2]). This function fetches
the return value of the Python methods, converted to JSON.

For instance, to call the resequence of the
DataSet controller:

openerp.connection.rpc('/web/dataset/resequence', {
 model: some_model,
 ids: array_of_ids,
 offset: 42
}).then(function (result) {
 // resequenced on server
});

	[1]	with a small twist: SQLAlchemy’s orm.query.Query.group_by
is not terminal, it returns a query which can still be altered.

	[2]	except for context, which is extracted and stored in the
request object itself.

 Copyright 2012, OpenERP s.a..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenERP Web Developers Documentation 7.0 documentation

QWeb

QWeb is the template engine used by the OpenERP Web Client. It is an
XML-based templating language, similar to Genshi [http://en.wikipedia.org/wiki/Genshi_(templating_language)],
Thymeleaf [http://en.wikipedia.org/wiki/Thymeleaf] or Facelets [http://en.wikipedia.org/wiki/Facelets] with a few peculiarities:

	It’s implemented fully in javascript and rendered in the browser.

	Each template file (XML files) contains multiple templates, where
template engine usually have a 1:1 mapping between template files
and templates.

	It has special support in OpenERP Web’s
Widget, though it can be used outside of
OpenERP Web (and it’s possible to use Widget
without relying on the QWeb integration).

The rationale behind using QWeb instead of a more popular template syntax is
that its extension mechanism is very similar to the openerp view inheritance
mechanism. Like openerp views a QWeb template is an xml tree and therefore
xpath or dom manipulations are easy to performs on it.

Here’s an example demonstrating most of the basic QWeb features:

<templates>
 <div t-name="example_template" t-attf-class="base #{cls}">
 <h4 t-if="title"><t t-esc="title"/></h4>

 <li t-foreach="items" t-as="item" t-att-class="item_parity">
 <t t-call="example_template.sub">
 <t t-set="arg" t-value="item_value"/>
 </t>

 </div>
 <t t-name="example_template.sub">
 <t t-esc="arg.name"/>
 <dl>
 <t t-foreach="arg.tags" t-as="tag" t-if="tag_index lt 5">
 <dt><t t-esc="tag"/></dt>
 <dd><t t-esc="tag_value"/></dd>
 </t>
 </dl>
 </t>
</templates>

rendered with the following context:

{
 "class1": "foo",
 "title": "Random Title",
 "items": [
 { "name": "foo", "tags": {"bar": "baz", "qux": "quux"} },
 { "name": "Lorem", "tags": {
 "ipsum": "dolor",
 "sit": "amet",
 "consectetur": "adipiscing",
 "elit": "Sed",
 "hendrerit": "ullamcorper",
 "ante": "id",
 "vestibulum": "Lorem",
 "ipsum": "dolor",
 "sit": "amet"
 }
 }
]
}

will yield this section of HTML document (reformated for readability):

<div class="base foo">
 <h4>Random Title</h4>

 <li class="even">
 foo
 <dl>
 <dt>bar</dt>
 <dd>baz</dd>
 <dt>qux</dt>
 <dd>quux</dd>
 </dl>

 <li class="odd">
 Lorem
 <dl>
 <dt>ipsum</dt>
 <dd>dolor</dd>
 <dt>sit</dt>
 <dd>amet</dd>
 <dt>consectetur</dt>
 <dd>adipiscing</dd>
 <dt>elit</dt>
 <dd>Sed</dd>
 <dt>hendrerit</dt>
 <dd>ullamcorper</dd>
 </dl>

</div>

API

While QWeb implements a number of attributes and methods for
customization and configuration, only two things are really important
to the user:

	
class QWeb2.Engine()

	The QWeb “renderer”, handles most of QWeb’s logic (loading,
parsing, compiling and rendering templates).

OpenERP Web instantiates one for the user, and sets it to
instance.web.qweb. It also loads all the template files of the
various modules into that QWeb instance.

A QWeb2.Engine() also serves as a “template namespace”.

	
QWeb2.Engine.render(template[, context])

	Renders a previously loaded template to a String, using
context (if provided) to find the variables accessed
during template rendering (e.g. strings to display).

	Arguments:	
	template (String) – the name of the template to render

	context (Object) – the basic namespace to use for template
rendering

	Returns:	String

The engine exposes an other method which may be useful in some
cases (e.g. if you need a separate template namespace with, in
OpenERP Web, Kanban views get their own QWeb2.Engine()
instance so their templates don’t collide with more general
“module” templates):

	
QWeb2.Engine.add_template(templates)

	Loads a template file (a collection of templates) in the QWeb
instance. The templates can be specified as:

	An XML string

	QWeb will attempt to parse it to an XML document then load
it.

	A URL

	QWeb will attempt to download the URL content, then load
the resulting XML string.

	A Document or Node

	QWeb will traverse the first level of the document (the
child nodes of the provided root) and load any named
template or template override.

A QWeb2.Engine() also exposes various attributes for
behavior customization:

	
QWeb2.Engine.prefix

	Prefix used to recognize directives
during parsing. A string. By default, t.

	
QWeb2.Engine.debug

	Boolean flag putting the engine in “debug mode”. Normally,
QWeb intercepts any error raised during template execution. In
debug mode, it leaves all exceptions go through without
intercepting them.

	
QWeb2.Engine.jQuery

	The jQuery instance used during template inheritance processing. Defaults to
window.jQuery.

	
QWeb2.Engine.preprocess_node

	A Function. If present, called before compiling each DOM
node to template code. In OpenERP Web, this is used to
automatically translate text content and some attributes in
templates. Defaults to null.

Directives

A basic QWeb template is nothing more than an XHTML document (as it
must be valid XML), which will be output as-is. But the rendering can
be customized with bits of logic called “directives”. Directives are
attributes elements prefixed by prefix (this
document will use the default prefix t, as does OpenERP Web).

A directive will usually control or alter the output of the element it
is set on. If no suitable element is available, the prefix itself can
be used as a “no-operation” element solely for supporting directives
(or internal content, which will be rendered). This means:

<t>Something something</t>

will simply output the string “Something something” (the element
itself will be skipped and “unwrapped”):

var e = new QWeb2.Engine();
e.add_template('<templates>\
 <t t-name="test1"><t>Test 1</t></t>\
 <t t-name="test2">Test 2</t>\
</templates>');
e.render('test1'); // Test 1
e.render('test2'); // Test 2

Note

The conventions used in directive descriptions are the following:

	directives are described as compound functions, potentially with
optional sections. Each section of the function name is an
attribute of the element bearing the directive.

	a special parameter is BODY, which does not have a name and
designates the content of the element.

	special parameter types (aside from BODY which remains
untyped) are Name, which designates a valid javascript
variable name, Expression which designates a valid
javascript expression, and Format which designates a
Ruby-style format string (a literal string with
#{Expression} inclusions executed and replaced by their
result)

Note

Expression actually supports a few extensions on the
javascript syntax: because some syntactic elements of javascript
are not compatible with XML and must be escaped, text
substitutions are performed from forms which don’t need to be
escaped. Thus the following “keyword operators” are available in
an Expression: and (maps to &&), or (maps to
||), gt (maps to >), gte (maps to >=), lt
(maps to <) and lte (maps to <=).

Defining Templates

	
t-name=name

	

	Parameters:	name (String) – an arbitrary javascript string. Each template
name is unique in a given
QWeb2.Engine() instance, defining a
new template with an existing name will
overwrite the previous one without warning.

When multiple templates are related, it is
customary to use dotted names as a kind of
“namespace” e.g. foo and foo.bar which
will be used either by foo or by a
sub-widget of the widget used by foo.

Templates can only be defined as the children of the document
root. The document root’s name is irrelevant (it’s not checked)
but is usually <templates> for simplicity.

<templates>
 <t t-name="template1">
 <!-- template code -->
 </t>
</templates>

t-name can be used on an element with
an output as well:

<templates>
 <div t-name="template2">
 <!-- template code -->
 </div>
</templates>

which ensures the template has a single root (if a template has
multiple roots and is then passed directly to jQuery, odd things
occur).

Output

	
t-esc=content

	

	Parameters:	content (Expression) –

Evaluates, html-escapes and outputs content.

	
t-escf=content

	

	Parameters:	content (Format) –

Similar to t-esc but evaluates a
Format instead of just an expression.

	
t-raw=content

	

	Parameters:	content (Expression) –

Similar to t-esc but does not
html-escape the result of evaluating content. Should only ever
be used for known-secure content, or will be an XSS attack vector.

	
t-rawf=content

	

	Parameters:	content (Format) –

Format-based version of t-raw.

	
t-att=map

	

	Parameters:	map (Expression) –

Evaluates map expecting an Object result, sets each
key:value pair as an attribute (and its value) on the holder
element:

will yield

	
t-att-ATTNAME=value

	

	Parameters:	
	ATTNAME (Name) –

	value (Expression) –

Evaluates value and sets it on the attribute ATTNAME on
the holder element.

If value‘s result is undefined, suppresses the creation of
the attribute.

	
t-attf-ATTNAME=value

	

	Parameters:	
	ATTNAME (Name) –

	value (Format) –

Similar to t-att-* but the value of
the attribute is specified via a Format instead of an
expression. Useful for specifying e.g. classes mixing literal
classes and computed ones.

Flow Control

	
t-set=name (t-value=value | BODY)

	

	Parameters:	
	name (Name) –

	value (Expression) –

	BODY –

Creates a new binding in the template context. If value is
specified, evaluates it and sets it to the specified
name. Otherwise, processes BODY and uses that instead.

	
t-if=condition

	

	Parameters:	condition (Expression) –

Evaluates condition, suppresses the output of the holder
element and its content of the result is falsy.

	
t-foreach=iterable [t-as=name]

	

	Parameters:	
	iterable (Expression) –

	name (Name) –

Evaluates iterable, iterates on it and evaluates the holder
element and its body once per iteration round.

If name is not specified, computes a name based on
iterable (by replacing non-Name characters by _).

If iterable yields a Number, treats it as a range from 0
to that number (excluded).

While iterating, t-foreach adds a
number of variables in the context:

	#{name}

	If iterating on an array (or a range), the current value in
the iteration. If iterating on an object, the current key.

	#{name}_all

	The collection being iterated (the array generated for a
Number)

	#{name}_value

	The current iteration value (current item for an array, value
for the current item for an object)

	#{name}_index

	The 0-based index of the current iteration round.

	#{name}_first

	Whether the current iteration round is the first one.

	#{name}_parity

	"odd" if the current iteration round is odd, "even"
otherwise. 0 is considered even.

	
t-call=template [BODY]

	

	Parameters:	
	template (String) –

	BODY –

Calls the specified template and returns its result. If
BODY is specified, it is evaluated before calling
template and can be used to specify e.g. parameters. This
usage is similar to call-template with with-param in XSLT [http://zvon.org/xxl/XSLTreference/OutputOverview/xslt_with-param_frame.html].

Template Inheritance and Extension

	
t-extend=template BODY

	

	Parameters:	template (String) – name of the template to extend

Works similarly to OpenERP models: if used on its own, will alter
the specified template in-place; if used in conjunction with
t-name will create a new template
using the old one as a base.

BODY should be a sequence of t-jquery alteration directives.

Note

The inheritance in the second form is static: the parent
template is copied and transformed when t-extend is called. If it is altered later (by
a t-extend without a
t-name), these changes will not
appear in the “child” templates.

	
t-jquery=selector [t-operation=operation] BODY

	

	Parameters:	
	selector (String) – a CSS selector into the parent template

	operation – one of append, prepend, before,
after, inner or replace.

	BODY – operation argument, or alterations to perform

	If operation is specified, applies the selector to the
parent template to find a context node, then applies
operation (as a jQuery operation) to the context node,
passing BODY as parameter.

Note

replace maps to jQuery’s replaceWith(newContent) [http://api.jquery.com/replaceWith/], inner maps to
html(htmlString) [http://api.jquery.com/html/].

	If operation is not provided, BODY is evaluated as
javascript code, with the context node as this.

Warning

While this second form is much more powerful than the first,
it is also much harder to read and maintain and should be
avoided. It is usually possible to either avoid it or
replace it with a sequence of t-jquery:t-operation:.

Escape Hatches / debugging

	
t-log=expression

	

	Parameters:	expression (Expression) –

Evaluates the provided expression (in the current template
context) and logs its result via console.log.

	
t-debug

	Injects a debugger breakpoint (via the debugger; statement) in
the compiled template output.

	
t-js=context BODY

	

	Parameters:	
	context (Name) –

	BODY – javascript code

Injects the provided BODY javascript code into the compiled
template, passing it the current template context using the name
specified by context.

 Copyright 2012, OpenERP s.a..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenERP Web Developers Documentation 7.0 documentation

Client actions

Client actions are the client-side version of OpenERP’s “Server
Actions”: instead of allowing for semi-arbitrary code to be executed
in the server, they allow for execution of client-customized code.

On the server side, a client action is an action of type
ir.actions.client, which has (at most) two properties: a mandatory
tag, which is an arbitrary string by which the client will
identify the action, and an optional params which is simply a map
of keys and values sent to the client as-is (this way, client actions
can be made generic and reused in multiple contexts).

General Structure

In the OpenERP Web code, a client action only requires two pieces of
information:

	Mapping the action’s tag to an object

	Providing said object. Two different types of objects can be mapped
to a client action:
	An OpenERP Web widget, which must inherit from
openerp.web.Widget()

	A regular javascript function

The major difference is in the lifecycle of these:

	if the client action maps to a function, the function will be called
when executing the action. The function can have no further
interaction with the Web Client itself, although it can return an
action which will be executed after it.

The function takes 2 parameters: the ActionManager calling it and
the descriptor for the current action (the ir.actions.client
dictionary).

	if, on the other hand, the client action maps to a
Widget(), that
Widget() will be instantiated and added to
the web client’s canvas, with the usual
Widget() lifecycle (essentially, it will
either take over the content area of the client or it will be
integrated within a dialog).

For example, to create a client action displaying a res.widget
object:

// Registers the object 'openerp.web_dashboard.Widget' to the client
// action tag 'board.home.widgets'
instance.web.client_actions.add(
 'board.home.widgets', 'instance.web_dashboard.Widget');
instance.web_dashboard.Widget = instance.web.Widget.extend({
 template: 'HomeWidget'
});

At this point, the generic Widget() lifecycle
takes over, the template is rendered, inserted in the client DOM,
bound on the object’s $el property and the object is started.

The second parameter to the constructor is the descriptor for the
action itself, which contains any parameter provided:

init: function (parent, action) {
 // execute the Widget's init
 this._super(parent);
 // board.home.widgets only takes a single param, the identifier of the
 // res.widget object it should display. Store it for later
 this.widget_id = action.params.widget_id;
}

More complex initialization (DOM manipulations, RPC requests, ...)
should be performed in the start()
method.

Note

As required by Widget()‘s contract, if
start() executes any asynchronous
code it should return a $.Deferred so callers know when it’s
ready for interaction.

start: function () {
 return $.when(
 this._super(),
 // Simply read the res.widget object this action should display
 new instance.web.Model('res.widget').call(
 'read', [[this.widget_id], ['title']])
 .then(this.proxy('on_widget_loaded'));
}

The client action can then behave exactly as it wishes to within its
root (this.$el). In this case, it performs further renderings once
its widget’s content is retrieved:

on_widget_loaded: function (widgets) {
 var widget = widgets[0];
 var url = _.sprintf(
 '/web_dashboard/widgets/content?session_id=%s&widget_id=%d',
 this.session.session_id, widget.id);
 this.$el.html(QWeb.render('HomeWidget.content', {
 widget: widget,
 url: url
 }));
}

 Copyright 2012, OpenERP s.a..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenERP Web Developers Documentation 7.0 documentation

Guidelines and Recommendations

Web Module Recommendations

Identifiers (id attribute) should be avoided

In generic applications and modules, @id limits the reusabily of
components and tends to make code more brittle.

Just about all the time, they can be replaced with nothing, with
classes or with keeping a reference to a DOM node or a jQuery element
around.

Note

If it is absolutely necessary to have an @id (because a
third-party library requires one and can’t take a DOM element), it
should be generated with _.uniqueId [http://underscorejs.org/#uniqueId] or some other similar
method.

Avoid predictable/common CSS class names

Class names such as “content” or “navigation” might match the desired
meaning/semantics, but it is likely an other developer will have the
same need, creating a naming conflict and unintended behavior. Generic
class names should be prefixed with e.g. the name of the component
they belong to (creating “informal” namespaces, much as in C or
Objective-C)

Global selectors should be avoided

Because a component may be used several times in a single page (an
example in OpenERP is dashboards), queries should be restricted to a
given component’s scope. Unfiltered selections such as $(selector)
or document.querySelectorAll(selector) will generally lead to
unintended or incorrect behavior.

OpenERP Web’s Widget() has an attribute
providing its DOM root Widget.$el,
and a shortcut to select nodes directly Widget.$.

More generally, never assume your components own or controls anything
beyond its own personal DOM.

Understand deferreds

Deferreds, promises, futures, …

Known under many names, these objects are essential to and (in OpenERP
Web) widely used for making asynchronous javascript operations palatable and understandable.

OpenERP Web guidelines

	HTML templating/rendering should use QWeb unless absolutely
trivial.

	All interactive components (components displaying information to the
screen or intercepting DOM events) must inherit from
Widget and correctly implement and use its API
and lifecycle.

	All css classes must be prefixed with oe_ .

	Asynchronous functions (functions which call session.rpc directly or indirectly at the very least) must return
deferreds, so that callers of overriders can correctly synchronize
with them.

 Copyright 2012, OpenERP s.a..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenERP Web Developers Documentation 7.0 documentation

Testing in OpenERP Web

Javascript Unit Testing

OpenERP Web 7.0 includes means to unit-test both the core code of
OpenERP Web and your own javascript modules. On the javascript side,
unit-testing is based on QUnit [http://qunitjs.com/] with a number of helpers and
extensions for better integration with OpenERP.

To see what the runner looks like, find (or start) an OpenERP server
with the web client enabled, and navigate to /web/tests e.g. on
OpenERP’s CI [http://trunk.runbot.openerp.com/web/tests]. This will
show the runner selector, which lists all modules with javascript unit
tests, and allows starting any of them (or all javascript tests in all
modules at once).

[image: _images/runner.png]
Clicking any runner button will launch the corresponding tests in the
bundled QUnit [http://qunitjs.com/] runner:

[image: _images/tests.png]

Writing a test case

The first step is to list the test file(s). This is done through the
test key of the openerp manifest, by adding javascript files to it
(next to the usual YAML files, if any):

{
 'name': "Demonstration of web/javascript tests",
 'category': 'Hidden',
 'depends': ['web'],
 'test': ['static/test/demo.js'],
}

and to create the corresponding test file(s)

Note

Test files which do not exist will be ignored, if all test files
of a module are ignored (can not be found), the test runner will
consider that the module has no javascript tests.

After that, refreshing the runner selector will display the new module
and allow running all of its (0 so far) tests:

[image: _images/runner2.png]
The next step is to create a test case:

openerp.testing.section('basic section', function (test) {
 test('my first test', function () {
 ok(false, "this test has run");
 });
});

All testing helpers and structures live in the openerp.testing
module. OpenERP tests live in a section(),
which is itself part of a module. The first argument to a section is
the name of the section, the second one is the section body.

test, provided by the
section() to the callback, is used to
register a given test case which will be run whenever the test runner
actually does its job. OpenERP Web test case use standard QUnit
assertions [http://api.qunitjs.com/category/assert/] within them.

Launching the test runner at this point will run the test and display
the corresponding assertion message, with red colors indicating the
test failed:

[image: _images/tests2.png]
Fixing the test (by replacing false to true in the assertion)
will make it pass:

[image: _images/tests3.png]

Assertions

As noted above, OpenERP Web’s tests use qunit assertions [http://api.qunitjs.com/category/assert/]. They are
available globally (so they can just be called without references to
anything). The following list is available:

	
ok(state[, message])

	checks that state is truthy (in the javascript sense)

	
strictEqual(actual, expected[, message])

	checks that the actual (produced by a method being tested) and
expected values are identical (roughly equivalent to ok(actual
=== expected, message))

	
notStrictEqual(actual, expected[, message])

	checks that the actual and expected values are not identical
(roughly equivalent to ok(actual !== expected, message))

	
deepEqual(actual, expected[, message])

	deep comparison between actual and expected: recurse into
containers (objects and arrays) to ensure that they have the same
keys/number of elements, and the values match.

	
notDeepEqual(actual, expected[, message])

	inverse operation to deepEqual()

	
throws(block[, expected][, message])

	checks that, when called, the block throws an
error. Optionally validates that error against expected.

	Arguments:	
	block (Function) –

	expected (Error | RegExp) – if a regexp, checks that the thrown error’s
message matches the regular expression. If an
error type, checks that the thrown error is of
that type.

	
equal(actual, expected[, message])

	checks that actual and expected are loosely equal, using
the == operator and its coercion rules.

	
notEqual(actual, expected[, message])

	inverse operation to equal()

Getting an OpenERP instance

The OpenERP instance is the base through which most OpenERP Web
modules behaviors (functions, objects, …) are accessed. As a result,
the test framework automatically builds one, and loads the module
being tested and all of its dependencies inside it. This new instance
is provided as the first positional parameter to your test
cases. Let’s observe by adding javascript code (not test code) to the
test module:

{
 'name': "Demonstration of web/javascript tests",
 'category': 'Hidden',
 'depends': ['web'],
 'js': ['static/src/js/demo.js'],
 'test': ['static/test/demo.js'],
}

// src/js/demo.js
openerp.web_tests_demo = function (instance) {
 instance.web_tests_demo = {
 value_true: true,
 SomeType: instance.web.Class.extend({
 init: function (value) {
 this.value = value;
 }
 })
 };
};

and then adding a new test case, which simply checks that the
instance contains all the expected stuff we created in the
module:

// test/demo.js
test('module content', function (instance) {
 ok(instance.web_tests_demo.value_true, "should have a true value");
 var type_instance = new instance.web_tests_demo.SomeType(42);
 strictEqual(type_instance.value, 42, "should have provided value");
});

DOM Scratchpad

As in the wider client, arbitrarily accessing document content is
strongly discouraged during tests. But DOM access is still needed to
e.g. fully initialize widgets before
testing them.

Thus, a test case gets a DOM scratchpad as its second positional
parameter, in a jQuery instance. That scratchpad is fully cleaned up
before each test, and as long as it doesn’t do anything outside the
scratchpad your code can do whatever it wants:

// test/demo.js
test('DOM content', function (instance, $scratchpad) {
 $scratchpad.html('<div>ok</div>');
 ok($scratchpad.find('span').hasClass('foo'),
 "should have provided class");
});
test('clean scratchpad', function (instance, $scratchpad) {
 ok(!$scratchpad.children().length, "should have no content");
 ok(!$scratchpad.text(), "should have no text");
});

Note

The top-level element of the scratchpad is not cleaned up, test
cases can add text or DOM children but shoud not alter
$scratchpad itself.

Loading templates

To avoid the corresponding processing costs, by default templates are
not loaded into QWeb. If you need to render e.g. widgets making use of
QWeb templates, you can request their loading through the
templates option to the test case
function.

This will automatically load all relevant templates in the instance’s
qweb before running the test case:

{
 'name': "Demonstration of web/javascript tests",
 'category': 'Hidden',
 'depends': ['web'],
 'js': ['static/src/js/demo.js'],
 'test': ['static/test/demo.js'],
 'qweb': ['static/src/xml/demo.xml'],
}

<!-- src/xml/demo.xml -->
<templates id="template" xml:space="preserve">
 <t t-name="DemoTemplate">
 <t t-foreach="5" t-as="value">
 <p><t t-esc="value"/></p>
 </t>
 </t>
</templates>

// test/demo.js
test('templates', {templates: true}, function (instance) {
 var s = instance.web.qweb.render('DemoTemplate');
 var texts = $(s).find('p').map(function () {
 return $(this).text();
 }).get();

 deepEqual(texts, ['0', '1', '2', '3', '4']);
});

Asynchronous cases

The test case examples so far are all synchronous, they execute from
the first to the last line and once the last line has executed the
test is done. But the web client is full of asynchronous code, and thus test cases need to be async-aware.

This is done by returning a deferred from the
case callback:

// test/demo.js
test('asynchronous', {
 asserts: 1
}, function () {
 var d = $.Deferred();
 setTimeout(function () {
 ok(true);
 d.resolve();
 }, 100);
 return d;
});

This example also uses the options parameter
to specify the number of assertions the case should expect, if less or
more assertions are specified the case will count as failed.

Asynchronous test cases must specify the number of assertions they
will run. This allows more easily catching situations where e.g. the
test architecture was not warned about asynchronous operations.

Note

Asynchronous test cases also have a 2 seconds timeout: if the test
does not finish within 2 seconds, it will be considered
failed. This pretty much always means the test will not
resolve. This timeout only applies to the test itself, not to
the setup and teardown processes.

Note

If the returned deferred is rejected, the test will be failed
unless fail_on_rejection is set to
false.

RPC

An important subset of asynchronous test cases is test cases which
need to perform (and chain, to an extent) RPC calls.

Note

Because they are a subset of asynchronous cases, RPC cases must
also provide a valid assertions count.

By default, test cases will fail when trying to perform an RPC
call. The ability to perform RPC calls must be explicitly requested by
a test case (or its containing test suite) through
rpc, and can be one of two modes: mock or
rpc.

Mock RPC

The preferred (and fastest from a setup and execution time point of
view) way to do RPC during tests is to mock the RPC calls: while
setting up the test case, provide what the RPC responses “should” be,
and only test the code between the “user” (the test itself) and the
RPC call, before the call is effectively done.

To do this, set the rpc option to
mock. This will add a third parameter to the test case callback:

	
mock(rpc_spec, handler)

	Can be used in two different ways depending on the shape of the
first parameter:

	If it matches the pattern model:method (if it contains a
colon, essentially) the call will set up the mocking of an RPC
call straight to the OpenERP server (through XMLRPC) as
performed via e.g. openerp.web.Model.call().

In that case, handler should be a function taking two
arguments args and kwargs, matching the corresponding
arguments on the server side and should simply return the value
as if it were returned by the Python XMLRPC handler:

test('XML-RPC', {rpc: 'mock', asserts: 3}, function (instance, $s, mock) {
 // set up mocking
 mock('people.famous:name_search', function (args, kwargs) {
 strictEqual(kwargs.name, 'bob');
 return [
 [1, "Microsoft Bob"],
 [2, "Bob the Builder"],
 [3, "Silent Bob"]
];
 });

 // actual test code
 return new instance.web.Model('people.famous')
 .call('name_search', {name: 'bob'}).then(function (result) {
 strictEqual(result.length, 3, "shoud return 3 people");
 strictEqual(result[0][1], "Microsoft Bob",
 "the most famous bob should be Microsoft Bob");
 });
});

	Otherwise, if it matches an absolute path (e.g. /a/b/c) it
will mock a JSON-RPC call to a web client controller, such as
/web/webclient/translations. In that case, the handler takes
a single params argument holding all of the parameters
provided over JSON-RPC.

As previously, the handler should simply return the result value
as if returned by the original JSON-RPC handler:

test('JSON-RPC', {rpc: 'mock', asserts: 3, templates: true}, function (instance, $s, mock) {
 var fetched_dbs = false, fetched_langs = false;
 mock('/web/database/get_list', function () {
 fetched_dbs = true;
 return ['foo', 'bar', 'baz'];
 });
 mock('/web/session/get_lang_list', function () {
 fetched_langs = true;
 return [['vo_IS', 'Hopelandic / Vonlenska']];
 });

 // widget needs that or it blows up
 instance.webclient = {toggle_bars: openerp.testing.noop};
 var dbm = new instance.web.DatabaseManager({});
 return dbm.appendTo($s).then(function () {
 ok(fetched_dbs, "should have fetched databases");
 ok(fetched_langs, "should have fetched languages");
 deepEqual(dbm.db_list, ['foo', 'bar', 'baz']);
 });
});

Note

Mock handlers can contain assertions, these assertions should be
part of the assertions count (and if multiple calls are made to a
handler containing assertions, it multiplies the effective number
of assertions).

Actual RPC

A more realistic (but significantly slower and more expensive) way to
perform RPC calls is to perform actual calls to an actually running
OpenERP server. To do this, set the rpc option to rpc, it will not provide any new parameter
but will enable actual RPC, and the automatic creation and destruction
of databases (from a specified source) around tests.

First, create a basic model we can test stuff with:

from openerp.osv import orm, fields

class TestObject(orm.Model):
 _name = 'web_tests_demo.model'

 _columns = {
 'name': fields.char("Name", required=True),
 'thing': fields.char("Thing"),
 'other': fields.char("Other", required=True)
 }
 _defaults = {
 'other': "bob"
 }

then the actual test:

test('actual RPC', {rpc: 'rpc', asserts: 4}, function (instance) {
 var Model = new instance.web.Model('web_tests_demo.model');
 return Model.call('create', [{name: "Bob"}])
 .then(function (id) {
 return Model.call('read', [[id]]);
 }).then(function (records) {
 strictEqual(records.length, 1);
 var record = records[0];
 strictEqual(record.name, "Bob");
 strictEqual(record.thing, false);
 // default value
 strictEqual(record.other, 'bob');
 });
});

This test looks like a “mock” RPC test but for the lack of mock
response (and the different rpc type), however it has further
ranging consequences in that it will copy an existing database to a
new one, run the test in full on that temporary database and destroy
the database, to simulate an isolated and transactional context and
avoid affecting other tests. One of the consequences is that it takes
a long time to run (5~10s, most of that time being spent waiting for
a database duplication).

Furthermore, as the test needs to clone a database, it also has to ask
which database to clone, the database/super-admin password and the
password of the admin user (in order to authenticate as said
user). As a result, the first time the test runner encounters an
rpc: "rpc" test configuration it will produce the following
prompt:

[image: _images/db-query.png]
and stop the testing process until the necessary information has been
provided.

The prompt will only appear once per test run, all tests will use the
same “source” database.

Note

The handling of that information is currently rather brittle and
unchecked, incorrect values will likely crash the runner.

Note

The runner does not currently store this information (for any
longer than a test run that is), the prompt will have to be filled
every time.

Testing API

	
openerp.testing.section(name, [options,]body)

	A test section, serves as shared namespace for related tests (for
constants or values to only set up once). The body function
should contain the tests themselves.

Note that the order in which tests are run is essentially
undefined, do not rely on it.

	Arguments:	
	name (String) –

	options (TestOptions) –

	body (Function<case(), void>) –

	
openerp.testing.case(name, [options,]callback)

	Registers a test case callback in the test runner, the callback
will only be run once the runner is started (or maybe not at all,
if the test is filtered out).

	Arguments:	
	name (String) –

	options (TestOptions) –

	callback (Function<instance, $, Function<String, Function, void>>) –

	
class TestOptions()

	the various options which can be passed to
section() or
case(). Except for
setup and
teardown, an option on
case() will overwrite the corresponding
option on section() so
e.g. rpc can be set for a
section() and then differently set for
some case() of that
section()

	
TestOptions.asserts

	An integer, the number of assertions which should run during a
normal execution of the test. Mandatory for asynchronous tests.

	
TestOptions.setup

	Test case setup, run right before each test case. A section’s
setup() is run before the case’s own, if
both are specified.

	
TestOptions.teardown

	Test case teardown, a case’s teardown()
is run before the corresponding section if both are present.

	
TestOptions.fail_on_rejection

	If the test is asynchronous and its resulting promise is
rejected, fail the test. Defaults to true, set to
false to not fail the test in case of rejection:

// test/demo.js
test('unfail rejection', {
 asserts: 1,
 fail_on_rejection: false
}, function () {
 var d = $.Deferred();
 setTimeout(function () {
 ok(true);
 d.reject();
 }, 100);
 return d;
});

	
TestOptions.rpc

	RPC method to use during tests, one of "mock" or
"rpc". Any other value will disable RPC for the test (if
they were enabled by the suite for instance).

	
TestOptions.templates

	Whether the current module (and its dependencies)’s templates
should be loaded into QWeb before starting the test. A
boolean, false by default.

The test runner can also use two global configuration values set
directly on the window object:

	oe_all_dependencies is an Array of all modules with a web
component, ordered by dependency (for a module A with
dependencies A', any module of A' must come before A in
the array)

	oe_db_info is an object with 3 keys source, supadmin and
password. It is used to pre-configure actual RPC tests, to avoid a prompt being displayed
(especially for headless situations).

Running through Python

The web client includes the means to run these tests on the
command-line (or in a CI system), but while actually running it is
pretty simple the setup of the pre-requisite parts has some
complexities.

	Install unittest2 [http://pypi.python.org/pypi/unittest2] and QUnitSuite [http://pypi.python.org/pypi/QUnitSuite/] in your Python environment. Both
can trivially be installed via pip [http://pip-installer.org] or
easy_install [http://packages.python.org/distribute/easy_install.html].

The former is the unit-testing framework used by OpenERP, the
latter is an adapter module to run qunit [http://qunitjs.com/] test suites and convert
their result into something unittest2 [http://pypi.python.org/pypi/unittest2] can understand and report.

	Install PhantomJS [http://phantomjs.org/]. It is a headless
browser which allows automating running and testing web
pages. QUnitSuite [http://pypi.python.org/pypi/QUnitSuite/] uses it to actually run the qunit [http://qunitjs.com/] test suite.

The PhantomJS [http://phantomjs.org/] website provides pre-built binaries for some
platforms, and your OS’s package management probably provides it as
well.

If you’re building PhantomJS [http://phantomjs.org/] from source, I recommend preparing
for some knitting time as it’s not exactly fast (it needs to
compile both Qt [http://qt-project.org/] and Webkit [http://www.webkit.org/], both being pretty big projects).

Note

Because PhantomJS [http://phantomjs.org/] is webkit-based, it will not be able to test
if Firefox, Opera or Internet Explorer can correctly run the
test suite (and it is only an approximation for Safari and
Chrome). It is therefore recommended to also run the test
suites in actual browsers once in a while.

Note

The version of PhantomJS [http://phantomjs.org/] this was build through is 1.7,
previous versions should work but are not actually supported
(and tend to just segfault when something goes wrong in
PhantomJS [http://phantomjs.org/] itself so they’re a pain to debug).

	Set up OpenERP Command,
which will be used to actually run the tests: running the qunit [http://qunitjs.com/]
test suite requires a running server, so at this point OpenERP
Server isn’t able to do it on its own during the building/testing
process.

	Install a new database with all relevant modules (all modules with
a web component at least), then restart the server

Note

For some tests, a source database needs to be duplicated. This
operation requires that there be no connection to the database
being duplicated, but OpenERP doesn’t currently break
existing/outstanding connections, so restarting the server is
the simplest way to ensure everything is in the right state.

	Launch oe run-tests -d $DATABASE -mweb with the correct
addons-path specified (and replacing $DATABASE by the source
database you created above)

Note

If you leave out -mweb, the runner will attempt to run all
the tests in all the modules, which may or may not work.

If everything went correctly, you should now see a list of tests with
(hopefully) ok next to their names, closing with a report of the
number of tests run and the time it took:

test_empty_find (openerp.addons.web.tests.test_dataset.TestDataSetController) ... ok
test_ids_shortcut (openerp.addons.web.tests.test_dataset.TestDataSetController) ... ok
test_regular_find (openerp.addons.web.tests.test_dataset.TestDataSetController) ... ok
web.testing.stack: direct, value, success ... ok
web.testing.stack: direct, deferred, success ... ok
web.testing.stack: direct, value, error ... ok
web.testing.stack: direct, deferred, failure ... ok
web.testing.stack: successful setup ... ok
web.testing.stack: successful teardown ... ok
web.testing.stack: successful setup and teardown ... ok

[snip ~150 lines]

test_convert_complex_context (openerp.addons.web.tests.test_view.DomainsAndContextsTest) ... ok
test_convert_complex_domain (openerp.addons.web.tests.test_view.DomainsAndContextsTest) ... ok
test_convert_literal_context (openerp.addons.web.tests.test_view.DomainsAndContextsTest) ... ok
test_convert_literal_domain (openerp.addons.web.tests.test_view.DomainsAndContextsTest) ... ok
test_retrieve_nonliteral_context (openerp.addons.web.tests.test_view.DomainsAndContextsTest) ... ok
test_retrieve_nonliteral_domain (openerp.addons.web.tests.test_view.DomainsAndContextsTest) ... ok

--
Ran 181 tests in 15.706s

OK

Congratulation, you have just performed a successful “offline” run of
the OpenERP Web test suite.

Note

Note that this runs all the Python tests for the web module,
but all the web tests for all of OpenERP. This can be surprising.

 Copyright 2012, OpenERP s.a..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenERP Web Developers Documentation 7.0 documentation

Search View

OpenERP Web 7.0 implements a unified facets-based search view instead
of the previous form-like search view (composed of buttons and
multiple fields). The goal for this change is twofold:

	Avoid the common issue of users confusing the search view with a
form view and trying to create their records through it (or entering
all their data, hitting the Create button expecting their record
to be created and losing everything).

	Improve the looks and behaviors of the view, and the fit within
OpenERP Web’s new design.

The internal structure of the faceted search is inspired by
VisualSearch [http://documentcloud.github.com/visualsearch/]
[1].

As does VisualSearch, the new search view is based on Backbone [http://documentcloud.github.com/backbone/] and
makes significant use of Backbone’s models and collections (OpenERP
Web’s widgets make a good replacement for Backbone’s own views). As a
result, understanding the implementation details of the OpenERP Web 7
search view also requires a basic understanding of Backbone’s models,
collections and events.

Note

This document may mention fetching data. This is a shortcut for
“returning a Deferred() to [whatever is being
fetched]”. Unless further noted, the function or method may opt to
return nothing by fetching null (which can easily be done by
returning $.when(null), which simply wraps the null in a
Deferred).

Working with the search view: creating new inputs

The primary component of search views, as with all other OpenERP
views, are inputs. The search view has two types of inputs — filters
and fields — but only one is easly customizable: fields.

The mapping from OpenERP field types (and widgets) to search view
objects is stored in the openerp.web.search.fields
Registry() where new field types and widgets
can be added.

Search view inputs have four main roles:

Loading defaults

Once the search view has initialized all its inputs, it will call
facet_for_defaults() on each input,
passing it a mapping (a javascript object) of name:value extracted
from the action’s context.

This method should fetch a Facet() (or
an equivalent object) for the field’s default value if applicable (if
a default value for the field is found in the defaults mapping).

A default implementation is provided which checks if defaults
contains a non-falsy value for the field’s @name and calls
openerp.web.search.Input.facet_for() with that value.

There is no default implementation of
openerp.web.search.Input.facet_for() [2], but
openerp.web.search.Field() provides one, which uses the
value as-is to fetch a Facet().

Providing completions

An important component of the new search view is the auto-completion
pane, and the task of providing completion items is delegated to
inputs through the complete()
method.

This method should take a single argument (the string being typed by
the user) and should fetch an Array of possible completions
[3].

A default implementation is provided which fetches nothing.

A completion item is a javascript object with two keys (technically it
can have any number of keys, but only these two will be used by the
search view):

label

The string which will be displayed in the completion pane. It may
be formatted using HTML (inline only), as a result if value is
interpolated into it it must be escaped. _.escape can be
used for this.

facet

Either a Facet() object or (more
commonly) the corresponding attributes object. This is the facet
which will be inserted into the search query if the completion
item is selected by the user.

If the facet is not provided (not present, null, undefined
or any other falsy value), the completion item will not be selectable
and will act as a section title of sort (the label will be
formatted differently). If an input may fetch multiple completion
items, it should prefix those with a section title using its own
name. This has no technical consequence but is clearer for users.

Note

If a field is invisible, its completion function will
not be called.

Providing drawer/supplementary UI

For some inputs (fields or not), interaction via autocompletion may be
awkward or even impossible.

These may opt to being rendered in a “drawer” as well or instead. In
that case, they will undergo the normal widget lifecycle and be
rendered inside the drawer.

Any input can note its desire to be rendered in the drawer by
returning a truthy value from
in_drawer().

By default, in_drawer() returns the
value of _in_drawer, which is
false. The behavior can be toggled either by redefining the
attribute to true (either on the class or on the input), or by
overriding in_drawer() itself.

The input will be rendered in the full width of the drawer, it will be
started only once (per view).

Todo

drawer API (if a widget wants to close the drawer in some
way), part of the low-level SearchView API/interactions?

Todo

handle filters and filter groups via a “driver” input which
dynamically collects, lays out and renders filters? =>
exercises drawer thingies

Note

An invisible input
will not be inserted into the drawer.

Converting from facet objects

Ultimately, the point of the search view is to allow searching. In
OpenERP this is done via domains. On
the other hand, the OpenERP Web 7 search view’s state is modelled
after a collection of Facet(), and each
field of a search view may have special requirements when it comes to
the domains it produces [5].

So there needs to be some way of mapping
Facet() objects to OpenERP search data.

This is done via an input’s
get_domain() and
get_context(). Each takes a
Facet() and returns whatever it’s
supposed to generate (a domain or a context, respectively). Either can
return null if the current value does not map to a domain or
context, and can throw an Invalid()
exception if the value is not valid at all for the field.

Note

The Facet() object can have any
number of values (from 1 upwards)

Note

There is a third conversion method,
get_groupby(), which returns an
Array of groupby domains rather than a single context. At this
point, it is only implemented on (and used by) filters.

Programmatic interactions: internal model

This new searchview is built around an instance of
SearchQuery() available as
openerp.web.SearchView.query.

The query is a backbone collection [http://documentcloud.github.com/backbone/#Collection] of
Facet() objects, which can be interacted
with directly by external objects or search view controls
(e.g. widgets displayed in the drawer).

	
class openerp.web.search.SearchQuery()

	The current search query of the search view, provides convenience
behaviors for manipulating Facet()
on top of the usual backbone collection [http://documentcloud.github.com/backbone/#Collection] methods.

The query ensures all of its facets contain at least one
FacetValue() instance. Otherwise,
the facet is automatically removed from the query.

	
openerp.web.search.SearchQuery.add(values, options)

	Overridden from the base add method so that adding a facet
which is already in the collection will merge the value of
the new facet into the old one rather than add a second facet
with different values.

	Arguments:	
	values – facet, facet attributes or array thereof

	Returns:	the collection itself

	
openerp.web.search.SearchQuery.toggle(value, options)

	Convenience method for toggling facet values in a query:
removes the values (through the facet itself) if they are
present, adds them if they are not. If the facet itself is not
in the collection, adds it automatically.

A toggling is atomic: only one change event will be triggered
on the facet regardless of the number of values added to or
removed from the facet (if the facet already exists), and the
facet is only removed from the query if it has no value at
the end of the toggling.

	Arguments:	
	value – facet or facet attributes

	Returns:	the collection

	
class openerp.web.search.Facet()

	A backbone model [http://documentcloud.github.com/backbone/#Model] representing a single facet of the current
research. May map to a search field, or to a more complex or
fuzzier input (e.g. a custom filter or an advanced search).

	
category

	The displayed name of the facet, as a String. This is a
backbone model attribute.

	
field

	The Input() instance which
originally created the facet [4], used to delegate
some operations (such as serializing the facet’s values to
domains and contexts). This is a backbone model attribute.

	
values

	FacetValues() as a javascript
attribute, stores all the values for the facet and helps
propagate their events to the facet. Is also available as a
backbone attribute (via #get and #set) in which cases
it serializes to and deserializes from javascript arrays (via
Collection#toJSON and Collection#reset).

	
[icon]

	optional, a single ASCII letter (a-z or A-Z) mapping to the
bundled mnmliconsRegular icon font.

When a facet with an icon attribute is rendered, the icon
is displayed (in the icon font) in the first section of the
facet instead of the category.

By default, only filters make use of this facility.

	
class openerp.web.search.FacetValues()

	Backbone collection [http://documentcloud.github.com/backbone/#Collection] of
FacetValue() instances.

	
class openerp.web.search.FacetValue()

	Backbone model [http://documentcloud.github.com/backbone/#Model] representing a single value within a facet,
represents a pair of (displayed name, logical value).

	
label

	Backbone model attribute storing the “displayable”
representation of the value, visually output to the
user. Must be a string.

	
value

	Backbone model attribute storing the logical/internal value
(of itself), will be used by
Input() to serialize to domains
and contexts.

Can be of any type.

Field services

Field() provides a default
implementation of get_domain() and
get_context() taking care of most
of the peculiarities pertaining to OpenERP’s handling of fields in
search views. It also provides finer hooks to let developers of new
fields and widgets customize the behavior they want without
necessarily having to reimplement all of
get_domain() or
get_context():

	
openerp.web.search.Field.get_context(facet)

	If the field has no @context, simply returns
null. Otherwise, calls
value_from() once for each
FacetValue() of the current
Facet() (in order to extract the
basic javascript object from the
FacetValue() then evaluates
@context with each of these values set as self, and
returns the union of all these contexts.

	Arguments:	
	facet (openerp.web.search.Facet) –

	Returns:	a context (literal or compound)

	
openerp.web.search.Field.get_domain(facet)

	If the field has no @filter_domain, calls
make_domain() once with each
FacetValue() of the current
Facet() as well as the field’s
@name and either its @operator or
default_operator.

If the field has an @filter_value, calls
value_from() once per
FacetValue() and evaluates
@filter_value with each of these values set as self.

In either case, “ors” all of the resulting domains (using |)
if there is more than one
FacetValue() and returns the union
of the result.

	Arguments:	
	facet (openerp.web.search.Facet) –

	Returns:	a domain (literal or compound)

	
openerp.web.search.Field.make_domain(name, operator, facetValue)

	Builds a literal domain from the provided data. Calls
value_from() on the
FacetValue() and evaluates and sets
it as the domain’s third value, uses the other two parameters as
the first two values.

Can be overridden to build more complex default domains.

	Arguments:	
	name (String) – the field’s name

	operator (String) – the operator to use in the field’s domain

	facetValue (openerp.web.search.FacetValue) –

	Returns:	Array<(String, String, Object)>

	
openerp.web.search.Field.value_from(facetValue)

	Extracts a “bare” javascript value from the provided
FacetValue(), and returns it.

The default implementation will simply return the value
backbone property of the argument.

	Arguments:	
	facetValue (openerp.web.search.FacetValue) –

	Returns:	Object

	
openerp.web.search.Field.default_operator

	Operator used to build a domain when a field has no @operator
or @filter_domain. "=" for
Field()

Arbitrary data storage

Facet() and
FacetValue() objects (and structures)
provided by your widgets should never be altered by the search view
(or an other widget). This means you are free to add arbitrary fields
in these structures if you need to (because you have more complex
needs than the attributes described in this document).

Ideally this should be avoided, but the possibility remains.

Changes

Todo

merge in changelog instead?

The displaying of the search view was significantly altered from
OpenERP Web 6.1 to OpenERP Web 7.

As a result, while the external API used to interact with the search
view does not change many internal details — including the interaction
between the search view and its widgets — were significantly altered:

Internal operations

	openerp.web.SearchView.do_clear() has been removed

	openerp.web.SearchView.do_toggle_filter() has been removed

Widgets API

	openerp.web.search.Widget.render() has been removed

	openerp.web.search.Widget.make_id() has been removed

	Search field objects are not openerp widgets anymore, their
start is not generally called

	clear() has been removed since
clearing the search view now simply consists of removing all search
facets

	get_domain() and
get_context() now take a
Facet() as parameter, from which it’s
their job to get whatever value they want

	get_groupby() has been added. It returns
an Array() of context-like constructs. By default, it does not do
anything in Field() and it returns the various
contexts of its enabled filters in
FilterGroup().

Filters

	openerp.web.search.Filter.is_enabled() has been removed

	FilterGroup() instances are still
rendered (and started) in the “advanced search” drawer.

Fields

	get_value has been replaced by
value_from() as it now takes a
FacetValue() argument (instead of no
argument). It provides a default implementation returning the
value property of its argument.

	The third argument to
make_domain() is now a
FacetValue() so child classes have all
the information they need to derive the “right” resulting domain.

Custom filters

Instead of being an intrinsic part of the search view, custom filters
are now a special case of filter groups. They are treated specially
still, but much less so than they used to be.

Many To One

	Because the autocompletion service is now provided by the search
view itself,
openerp.web.search.ManyToOneField.setup_autocomplete() has
been removed.

Advanced Search

	The advanced search is now a more standard
Input() configured to be rendered in
the drawer.

	Field() are
now standard widgets, with the “right” behaviors (they don’t rebind
their $element in start())

	The ad-hoc optional setting of the openerp field descriptor on a
Field() has
been removed, the field descriptor is now passed as second argument
to the
Field()‘s
constructor, and bound to its
field.

	Instead of its former domain triplet (field, operator, value),
get_proposition()
now returns an object with two fields label and value,
respectively a human-readable version of the proposition and the
corresponding domain triplet for the proposition.

	[1]	the original view was implemented on top of a monkey-patched
VisualSearch, but as our needs diverged from VisualSearch’s goal
this made less and less sense ultimately leading to a clean-room
reimplementation

	[2]	In case you are extending the search view with a brand new type of
input

	[3]	Ideally this array should not hold more than about 10 items, but
the search view does not put any constraint on this at the
moment. Note that this may change.

	[4]	field does not actually need to be an instance of
Input(), nor does it need to be what
created the facet, it just needs to provide the three
facet-serialization methods
get_domain(),
get_context() and
get_gropuby(), existing
Input() subtypes merely provide
convenient base implementation for those methods.

Complex search view inputs (especially those living in the drawer)
may prefer using object literals with the right slots returning
closed-over values or some other scheme un-bound to an actual
Input(), as
CustomFilters() and
Advanced() do.

	[5]	search view fields may also bundle context data to add to the
search context

 Copyright 2012, OpenERP s.a..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenERP Web Developers Documentation 7.0 documentation

List View

Style Hooks

The list view provides a few style hook classes for re-styling of list views in
various situations:

.oe_list

The root element of the list view, styling rules should be rooted
on that class.

table.oe_list_content

The root table for the listview, accessory components may be
generated or added outside this section, this is the list view
“proper”.

.oe_list_buttons

The action buttons array for the list view, with its sub-elements

.oe_list_add

The default “Create”/”Add” button of the list view

.oe_alternative

The “alternative choice” for the list view, by default text
along the lines of “or import” with a link.

.oe_list_field_cell

The cell (td) for a given field of the list view, cells which
are not fields (e.g. name of a group, or number of items in a
group) will not have this class. The field cell can be further
specified:

.oe_number

Numeric cell types (integer and float)

.oe_button

Action button (button tag in the view) inside the cell

.oe_readonly

Readonly field cell

.oe_list_field_$type

Additional class for the precise type of the cell, $type
is the field’s @widget if there is one, otherwise it’s the
field’s type.

.oe_list_record_selector

Selector cells

Editable list view

The editable list view module adds a few supplementary style hook
classes, for edition situations:

.oe_list_editable

Added to the .oe_list when the list is editable (however that
was done). The class may be removed on-the-fly if the list becomes
non-editable.

.oe_editing

Added to both .oe_list and .oe_list_button (as the
buttons may be outside of the list view) when a row of the list is
currently being edited.

tr.oe_edition

Class set on the row being edited itself. Note that the edition
form is not contained within the row, this allows for styling or
modifying the row while it’s being edited separately. Mostly for
fields which can not be edited (e.g. read-only fields).

Columns display customization

The list view provides a registry to
openerp.web.list.Column() objects allowing for the
customization of a column’s display (e.g. so that a binary field is
rendered as a link to the binary file directly in the list view).

The registry is instance.web.list.columns, the keys are of the
form tag.type where tag can be field or button, and
type can be either the field’s type or the field’s @widget (in
the view).

Most of the time, you’ll want to define a tag.widget key
(e.g. field.progressbar).

	
class openerp.web.list.Column(id, tag, attrs)

	
	
openerp.web.list.Column.format(record_data, options)

	Top-level formatting method, returns an empty string if the
column is invisible (unless the process_modifiers=false
option is provided); returns options.value_if_empty or an
empty string if there is no value in the record for the
column.

Otherwise calls _format()
and returns its result.

This method only needs to be overridden if the column has no
concept of values (and needs to bypass that check), for a
button for instance.

Otherwise, custom columns should generally override
_format() instead.

	Returns:	String

	
openerp.web.list.Column._format(record_data, options)

	Never called directly, called if the column is visible and has
a value.

The default implementation calls
format_value() and htmlescapes the
result (via _.escape).

Note that the implementation of
_format() must escape the
data provided to it, its output will not be escaped by
format().

	Returns:	String

Editable list view

List view edition is an extension to the base listview providing the
capability of inline record edition by delegating to an embedded form
view.

Editability status

The editability status of a list view can be queried through the
editable() method, will return a falsy
value if the listview is not currently editable.

The editability status is based on three flags:

tree/@editable

If present, can be either "top" or "bottom". Either will
make the list view editable, with new records being respectively
created at the top or at the bottom of the view.

context.set_editable

Boolean flag extracted from a search context (during the
do_search`() handler), true
will make the view editable (from the top), false or the
absence of the flag is a noop.

defaults.editable

Like tree/@editable, one of absent (null)), "top" or
"bottom", fallback for the list view if none of the previous
two flags are set.

These three flags can only make a listview editable, they can not
override a previously set flag. To do that, a listview user should
instead cancel the edit:before event.

The editable list view module adds a number of methods to the list
view, on top of implementing the EditorDelegate() protocol:

Interaction Methods

	
openerp.web.ListView.ensure_saved()

	Attempts to resolve the pending edition, if any, by saving the
edited row’s current state.

	Returns:	delegate resolving to all editions having been saved, or
rejected if a pending edition could not be saved
(e.g. validation failure)

	
openerp.web.ListView.start_edition([record][, options])

	Starts editing the provided record inline, through an overlay form
view of editable fields in the record.

If no record is provided, creates a new one according to the
editability configuration of the list view.

This method resolves any pending edition when invoked, before
starting a new edition.

	Arguments:	
	record (Record()) – record to edit, or null to create a new record

	options (EditOptions) –

	Returns:	delegate to the form used for the edition

	
openerp.web.ListView.save_edition()

	Resolves the pending edition.

	Returns:	delegate to the save being completed, resolves to an
object with two attributes created (flag indicating
whether the saved record was just created or was
updated) and record the reloaded record having been
edited.

	
openerp.web.ListView.cancel_edition([force=false])

	Cancels pending edition, cleans up the list view in case of
creation (removes the empty record being created).

	Arguments:	
	force (Boolean) – doesn’t check if the user has added any
data, discards the edition unconditionally

Utility Methods

	
openerp.web.ListView.get_cells_for(row)

	Extracts the cells from a listview row, and puts them in a
{fieldname: cell} mapping for analysis and manipulation.

	Arguments:	
	row (jQuery) –

	Return type:	Object

	
openerp.web.ListView.with_event(event_name, event, action[, args][, trigger_params])

	Executes action in the context of the view’s editor,
bracketing it with cancellable event signals.

	Arguments:	
	event_name (String) – base name for the bracketing event, will
be postfixed by :before and
:after before being called
(respectively before and after
action is executed)

	event (Object) – object passed to the :before event
handlers.

	action (Function) – function called with the view’s editor as
its this. May return a deferred.

	args (Array) – arguments passed to action

	trigger_params (Array) – arguments passed to the :after
event handler alongside the results
of action

Behavioral Customizations

	
openerp.web.ListView.handle_onwrite(record)

	Implements the handling of the onwrite listview attribute:
calls the RPC methods specified by @onwrite, and if that
method returns an array of ids loads or reloads the records
corresponding to those ids.

	Arguments:	
	record (openerp.web.list.Record) – record being written having triggered the
onwrite callback

	Returns:	deferred to all reloadings being done

Events

For simpler interactions by/with external users of the listview, the
view provides a number of dedicated events to its lifecycle.

Note

if an event is defined as cancellable, it means its first
parameter is an object on which the cancel attribute can
be set. If the cancel attribute is set, the view will
abort its current behavior as soon as possible, and rollback
any state modification.

Generally speaking, an event should only be cancelled (by
setting the cancel flag to true), uncancelling an
event is undefined as event handlers are executed on a
first-come-first-serve basis and later handlers may
re-cancel an uncancelled event.

edit:before cancellable

Invoked before the list view starts editing a record.

Provided with an event object with a single property record,
holding the attributes of the record being edited (record is
empty but not null for a new record)

edit:after

Invoked after the list view has gone into an edition state,
provided with the attributes of the record being edited (see
edit:before) as first parameter and the form used for the
edition as second parameter.

save:before cancellable

Invoked right before saving a pending edition, provided with an
event object holding the listview’s editor (editor) and the
edition form (form)

save:after

Invoked after a save has been completed

cancel:before cancellable

Invoked before cancelling a pending edition, provided with the
same information as save:before.

cancel:after

Invoked after a pending edition has been cancelled.

DOM events

The list view has grown hooks for the keyup event on its edition
form (during edition): any such event bubbling out of the edition form
will be forwarded to a method keyup_EVENTNAME, where EVENTNAME
is the name of the key in $.ui.keyCode.

The method will also get the event object (originally passed to the
keyup handler) as its sole parameter.

The base editable list view has handlers for the ENTER and
ESCAPE keys.

Editor

The list-edition modules does not generally interact with the embedded
formview, delegating instead to its
Editor().

	
class openerp.web.list.Editor(parent[, options])

	The editor object provides a more convenient interface to form
views, and simplifies the usage of form views for semi-arbitrary
edition of stuff.

However, the editor does not task itself with being internally
consistent at this point: calling
e.g. edit() multiple times in a
row without saving or cancelling each edit is undefined.

	Arguments:	
	parent (Widget()) –

	options (EditorOptions) –

	
openerp.web.list.Editor.is_editing([record_state])

	Indicates whether the editor is currently in the process of
providing edition for a record.

Can be filtered by the state of the record being edited
(whether it’s a record being created or a record being
altered), in which case it asserts both that an edition is
underway and that the record being edited respectively does
not yet exist in the database or already exists there.

	Arguments:	
	record_state (String) – state of the record being edited.
Either "new" or "edit".

	Return type:	Boolean

	
openerp.web.list.Editor.edit(record, configureField[, options])

	Loads the provided record into the internal form view and
displays the form view.

Will also attempt to focus the first visible field of the form
view.

	Arguments:	
	record (Object) – record to load into the form view
(key:value mapping similar to the result
of a read)

	configureField (Function<String, openerp.web.form.Field>) – function called with each field of the
form view right after the form is
displayed, lets whoever called this
method do some last-minute
configuration of form fields.

	options (EditOptions) –

	Returns:	jQuery delegate to the form object

	
openerp.web.list.Editor.save()

	Attempts to save the internal form, then hide it

	Returns:	delegate to the record under edition (with id
added for a creation). The record is not updated
from when it was passed in, aside from the id
attribute.

	
openerp.web.list.Editor.cancel([force=false])

	Attemps to cancel the edition of the internal form, then hide
the form

	Arguments:	
	force (Boolean) – unconditionally cancels the edition of
the internal form, even if the user has
already entered data in it.

	Returns:	delegate to the record under edition

	
class EditorOptions()

	
	
EditorOptions.formView

	Form view (sub)-class to instantiate and delegate edition to.

By default, FormView()

	
EditorOptions.delegate

	Object used to get various bits of information about how to
display stuff.

By default, uses the editor’s parent widget. See
EditorDelegate() for the methods and attributes to
provide.

	
class EditorDelegate()

	Informal protocol defining the methods and attributes expected of
the Editor()‘s delegate.

	
EditorDelegate.dataset

	The dataset passed to the form view to synchronize the form
view and the outer widget.

	
EditorDelegate.edition_view(editor)

	Called by the Editor() object to
get a form view (JSON) to pass along to the form view it
created.

The result should be a valid form view, see Form Notes for various peculiarities of the form view
format.

	Arguments:	
	editor (Editor()) – editor object asking for the view

	Returns:	form view

	Return type:	Object

	
EditorDelegate.prepends_on_create()

	By default, the Editor() will
append the ids of newly created records to the
EditorDelegate.dataset. If this method returns
true, it will prepend these ids instead.

	Returns:	whether new records should be prepended to the
dataset (instead of appended)

	Return type:	Boolean

	
class EditOptions()

	Options object optionally passed into a method starting an edition
to configure its setup and behavior

	
focus_field

	Name of the field to set focus on after setting up the edition
of the record.

If this option is not provided, or the requested field can not
be focused (invisible, readonly or not in the view), the first
visible non-readonly field is focused.

Changes from 6.1

	The editable listview behavior has been rewritten pretty much from
scratch, any code touching on editability will have to be modified

	The overloading of Groups() and
List() for editability has been
drastically simplified, and most of the behavior has been moved to
the list view itself. Only
row_clicked() is still
overridden.

	A new method get_row_for(record) -> jQuery(tr) | null has been
added to both ListView.List and ListView.Group, it can be called
from the list view to get the table row matching a record (if such
a row exists).

	do_button_action()‘s core behavior
has been split away to
handle_button(). This allows bypassing
overrides of do_button_action() in a
parent class.

Ideally, handle_button() should not be
overridden.

	Modifiers handling has been improved (all modifiers information
should now be available through modifiers_for(),
not just invisible)

	Changed some handling of the list view’s record: a record may now
have no id, and the listview will handle that correctly (for new
records being created) as well as correctly handle the id being
set.

	Extended the internal collections structure of the list view with
#find [http://underscorejs.org/#find], #succ [http://hackage.haskell.org/packages/archive/base/latest/doc/html/Prelude.html#v:succ] and #pred [http://hackage.haskell.org/packages/archive/base/latest/doc/html/Prelude.html#v:pred].

 Copyright 2012, OpenERP s.a..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OpenERP Web Developers Documentation 7.0 documentation

Notes on the usage of the Form View as a sub-widget

Undocumented stuff

	initial_mode option defines the starting mode of the form
view, one of view and edit (?). Default value is view
(non-editable form).

	embedded_view attribute has to be set separately when
providing a view directly, no option available for that usage.

	View arch must contain node with
@class="oe_form_container", otherwise everything will break
without any info

	Root element of view arch not being form may or may not work
correctly, no idea.

	Freeform views => @version="7.0"

	Form is not entirely loaded (some widgets may not appear) unless
on_record_loaded is called (or do_show, which itself calls
on_record_loaded).

	“Empty” form => on_button_new (...), or manually call
default_get + on_record_loaded

	Form fields default to width: 100%, padding, !important margin, can
be reached via .oe_form_field

	Form will render buttons and a pager, offers options to locate
both outside of form itself ($buttons and $pager), providing
empty jquery objects ($()) seems to stop displaying both but not
sure if there are deleterious side-effects.

Other options:

	Pass in $(document.createDocumentFragment) to ensure it’s a
DOM-compatible tree completely outside of the actual DOM.

	???

	readonly fields probably don’t have a background, beware if need of
overlay

	What is the difference between readonly and
effective_readonly?

	No facilities for DOM events handling/delegations e.g. handling
keyup/keydown/keypress from a form fields into the form’s user.

	Also no way to reverse from a DOM node (e.g. DOMEvent#target) back to a
form view field easily

 Copyright 2012, OpenERP s.a..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	OpenERP Web Developers Documentation 7.0 documentation

API changes from OpenERP Web 6.1 to 7.0

Supported browsers

The OpenERP Web Client supports the following web browsers:

	Internet Explorer 9+

	Google Chrome 22+

	Firefox 13+

	Any browser using the latest version of Chrome Frame

DataSet -> Model

The 6.1 DataSet API has been deprecated in favor of the smaller
and more orthogonal Model API, which more closely
matches the API in OpenERP Web’s Python side and in OpenObject addons
and removes most stateful behavior of DataSet.

Migration guide

	Actual arbitrary RPC calls can just be remapped on a
Model() instance:

dataset.call(method, args)

or

dataset.call_and_eval(method, args)

can be replaced by calls to openerp.web.Model.call():

model.call(method, args)

If callbacks are passed directly to the older methods, they need to
be added to the new one via .then().

Note

The context_index and domain_index features were not
ported, context and domain now need to be passed in “in full”,
they won’t be automatically filled with the user’s current
context.

	Shorcut methods (name_get, name_search, unlink,
write, ...) should be ported to
openerp.web.Model.call(), using the server’s original
signature. On the other hand, the non-shortcut equivalents can now
use keyword arguments (see call()‘s
signature for details)

	read_slice, which allowed a single round-trip to perform a
search and a read, should be reimplemented via
Query() objects (see:
query()) for clearer and simpler
code. read_index should be replaced by a
Query() as well, combining
offset() and
first().

Rationale

Renaming

The name DataSet exists in the CS community consciousness, and
(as its name implies) it’s a set of data (often fetched from a
database, maybe lazily). OpenERP Web’s dataset behaves very
differently as it does not store (much) data (only a bunch of ids
and just enough state to break things). The name “Model” matches
the one used on the Python side for the task of building an RPC
proxy to OpenERP objects.

API simplification

DataSet has a number of methods which serve as little more
than shortcuts, or are there due to domain and context evaluation
issues in 6.1.

The shortcuts really add little value, and OpenERP Web 6.2 embeds
a restricted Python evaluator (in javascript) meaning most of the
context and domain parsing & evaluation can be moved to the
javascript code and does not require cooperative RPC bridging.

DataGroup -> also Model

Alongside the deprecation of DataSet for
Model(), OpenERP Web 7.0 removes
DataGroup and its subtypes as public objects in favor of a single method on
Query():
group_by().

Migration guide

Rationale

While the DataGroup API worked (mostly), it is quite odd and
alien-looking, a bit too Smalltalk-inspired (behaves like a
self-contained flow-control structure for reasons which may or may not
have been good).

Because it is heavily related to DataSet (as it yields
DataSet objects), deprecating DataSet automatically deprecates
DataGroup (if we want to stay consistent), which is a good time to
make the API more imperative and look more like what most developers
are used to.

But as DataGroup users in 6.1 were rare (and there really was little reason
to use it), it has been removed as a public API.

 Copyright 2012, OpenERP s.a..
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	OpenERP Web Developers Documentation 7.0 documentation

Index

 Symbols
 | C
 | D
 | E
 | F
 | L
 | M
 | N
 | O
 | Q
 | S
 | T
 | V
 | W

Symbols

 	

 	[icon] (None attribute)

C

 	

 	category (None attribute)

D

 	

 	deepEqual() (built-in function)

 	Deferred() (class)

 	Deferred.done() (Deferred method)

 	Deferred.fail() (Deferred method)

 	

 	Deferred.promise() (Deferred method)

 	Deferred.reject() (Deferred method)

 	Deferred.resolve() (Deferred method)

 	Deferred.then() (Deferred method)

E

 	

 	EditOptions() (class)

 	EditorDelegate() (class)

 	EditorDelegate.dataset (EditorDelegate attribute)

 	EditorDelegate.edition_view() (EditorDelegate method)

 	EditorDelegate.prepends_on_create() (EditorDelegate method)

 	

 	EditorOptions() (class)

 	EditorOptions.delegate (EditorOptions attribute)

 	EditorOptions.formView (EditorOptions attribute)

 	equal() (built-in function)

F

 	

 	field (None attribute)

 	

 	focus_field (None attribute)

L

 	

 	label (None attribute)

M

 	

 	mock() (built-in function)

N

 	

 	notDeepEqual() (built-in function)

 	notEqual() (built-in function)

 	

 	notStrictEqual() (built-in function)

O

 	

 	ok() (built-in function)

 	opeenrp.web.Query.offset() (opeenrp.web.Query method)

 	openerp.testing.case() (openerp.testing method)

 	openerp.testing.section() (openerp.testing method)

 	openerp.web.list.Column() (class)

 	openerp.web.list.Column._format() (openerp.web.list.Column method)

 	openerp.web.list.Column.format() (openerp.web.list.Column method)

 	openerp.web.list.Editor() (class)

 	openerp.web.list.Editor.cancel() (openerp.web.list.Editor method)

 	openerp.web.list.Editor.edit() (openerp.web.list.Editor method)

 	openerp.web.list.Editor.is_editing() (openerp.web.list.Editor method)

 	openerp.web.list.Editor.save() (openerp.web.list.Editor method)

 	openerp.web.ListView.cancel_edition() (openerp.web.ListView method)

 	openerp.web.ListView.ensure_saved() (openerp.web.ListView method)

 	openerp.web.ListView.get_cells_for() (openerp.web.ListView method)

 	openerp.web.ListView.handle_onwrite() (openerp.web.ListView method)

 	openerp.web.ListView.save_edition() (openerp.web.ListView method)

 	openerp.web.ListView.start_edition() (openerp.web.ListView method)

 	openerp.web.ListView.with_event() (openerp.web.ListView method)

 	openerp.web.Model() (class)

 	openerp.web.Model.call() (openerp.web.Model method)

 	openerp.web.Model.name (openerp.web.Model attribute)

 	openerp.web.Model.query() (openerp.web.Model method)

 	openerp.web.Query() (class)

 	openerp.web.Query.all() (openerp.web.Query method)

 	openerp.web.Query.context() (openerp.web.Query method)

 	openerp.web.Query.count() (openerp.web.Query method)

 	openerp.web.Query.filter() (openerp.web.Query method)

 	

 	openerp.web.Query.first() (openerp.web.Query method)

 	openerp.web.Query.group_by() (openerp.web.Query method)

 	openerp.web.Query.limit() (openerp.web.Query method)

 	openerp.web.Query.order_by() (openerp.web.Query method)

 	openerp.web.search.Facet() (class)

 	openerp.web.search.FacetValue() (class)

 	openerp.web.search.FacetValues() (class)

 	openerp.web.search.Field.default_operator (openerp.web.search.Field attribute)

 	openerp.web.search.Field.get_context() (openerp.web.search.Field method)

 	openerp.web.search.Field.get_domain() (openerp.web.search.Field method)

 	openerp.web.search.Field.make_domain() (openerp.web.search.Field method)

 	openerp.web.search.Field.value_from() (openerp.web.search.Field method)

 	openerp.web.search.SearchQuery() (class)

 	openerp.web.search.SearchQuery.add() (openerp.web.search.SearchQuery method)

 	openerp.web.search.SearchQuery.toggle() (openerp.web.search.SearchQuery method)

 	openerp.web.Widget() (class)

 	openerp.web.Widget.$() (openerp.web.Widget method)

 	openerp.web.Widget.attributes (openerp.web.Widget attribute)

 	openerp.web.Widget.className (openerp.web.Widget attribute)

 	openerp.web.Widget.delegateEvents() (openerp.web.Widget method)

 	openerp.web.Widget.events (openerp.web.Widget attribute)

 	openerp.web.Widget.id (openerp.web.Widget attribute)

 	openerp.web.Widget.renderElement() (openerp.web.Widget method)

 	openerp.web.Widget.setElement() (openerp.web.Widget method)

 	openerp.web.Widget.tagName (openerp.web.Widget attribute)

 	openerp.web.Widget.template (openerp.web.Widget attribute)

 	openerp.web.Widget.undelegateEvents() (openerp.web.Widget method)

Q

 	

 	QWeb2.Engine() (class)

 	QWeb2.Engine.add_template() (QWeb2.Engine method)

 	QWeb2.Engine.debug (QWeb2.Engine attribute)

 	QWeb2.Engine.jQuery (QWeb2.Engine attribute)

 	

 	QWeb2.Engine.prefix (QWeb2.Engine attribute)

 	QWeb2.Engine.preprocess_node (QWeb2.Engine attribute)

 	QWeb2.Engine.render() (QWeb2.Engine method)

S

 	

 	strictEqual() (built-in function)

T

 	

 	TestOptions() (class)

 	TestOptions.asserts (TestOptions attribute)

 	TestOptions.fail_on_rejection (TestOptions attribute)

 	TestOptions.rpc (TestOptions attribute)

 	

 	TestOptions.setup (TestOptions attribute)

 	TestOptions.teardown (TestOptions attribute)

 	TestOptions.templates (TestOptions attribute)

 	throws() (built-in function)

V

 	

 	value (None attribute)

 	

 	values (None attribute)

W

 	

 	when() (built-in function)

 Copyright 2012, OpenERP s.a..
 Created using Sphinx 1.2.2.

 _static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/openerp.png

_static/up-pressed.png

_images/db-query.png
A test needs to clone a database

Please provide the source clone information

DB Password:

Adnin Password:

(@

_images/runner.png
+ Wb (o)
+ Baso import (Rur7ar)

_static/ajax-loader.gif

_images/runner2.png
(Run all tests)

© Web (RunTests)
« Base import (RunTests)
« Demonstration of web/javascript tests (Run Tests)

_images/tests.png
OpenERP Web Tests

(OHide passed tests (] Check for Globals (] No try-catch

Tests completed in 8045 milissconds.
449 tests of 449 passed, 0 faied.

1. web-class: Basic class creation (0, 2, 2)

2. web-class: Class initialization (0, 2, 2)

3. web-class: Inheritance (0, 3, 3)

4. web-class: In-place extension (0, 4, 4)

5. web-class: In-place extension and inheritance (0, 4, 4)
6. web-class: In-place extensions alter existing instances (0, 4, 4)
7. web-class: In-place extension of subclassed types (0, 3, 3)

8. Registry: key set (0, 1, 1)

9. Registry: extension (0, 2, 2)

10. Registry: remain-linked (0, 2, 2)

11. Registry: multiget (0, 1, 1)

12. Registry: extended-multiget (0, 1, 1)
13. form.widget: compute_domain (0, 3, 3)

14. form.widget: compute_domain or (0, 3, 3)

_images/tests2.png
OpenERP Web Tests

(OHide passed tests (] Check for Globals (] No try-catch

Tests completed in 20 miliseconds.
O tests of 1 passed, 1 faied.

1. web_tests_demo.basic section: my first test (1, 0, 1)

1. this test has run

_images/tests3.png
OpenERP Web Tests

(OHide passed tests (] Check for Globals (] No try-catch

ol N

lla/5.0 (Macintosh; I leWebKit/534

0SX 106

my first test (0, 1, 1)

[TR—

_static/minus.png

search.html

 Navigation

 		
 index

 		OpenERP Web Developers Documentation 7.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, OpenERP s.a..
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up.png

_static/comment.png

_static/plus.png

